Soils and Ground Water Characterization Bayonne Barrel and Drum Company Newark, New Jersey Job No. 84C182

PREPARED FOR

Scheider & Wiener, P.A.
Attorneys at Law
1180 Raymond Boulevard
Newark, New Jersey

ON BEHALF OF

First Fidelity Bank, N.A., New Jersey 550 Broad Street Newark, New Jersey

PREPARED BY

Dan Raviv Associates, Inc. 5 Central Avenue West Orange, New Jersey

> April 18, 1986 Updated: July 1986

Dan Raviv Associates, Inc.

Consultants in ground water hydrology, water quality and landfill hydrology

July 17, 1986

Scheider & Wiener, P.A. Attorneys at Law 1180 Raymond Boulevard Suite 400 Newark, New Jersey 07102

Attention: Avram Eule, Esq.

Re: Transmittal of Soils and Ground Water Characterization Report Bayonne Barrel and Drum Co. - Newark, New Jersey DRAI Job No. 84C182

Gentlemen:

Dan Raviv Associates, Inc. (DRAI) has completed a site investigation at Bayonne Barrel and Drum Company (BB&D). Enclosed you will find our Report entitled "Soils and Ground Water Characterization, Bayonne Barrel and Drum Company".

This investigation has been performed as outlined in the DRAI Work -Plan for the Investigation of Soils, Residues, and Water Quality, in compliance with the Consent Agreement Between Bayonne Barrel and Drum Company and the United States Environmental Protection Agency (USEPA) (Docket No. II RCRA-82-0015), dated October 1, 1984.

Our report includes a summary of: (1) activities performed during field investigations; (2) site description and geologic conditions; (3) results of analyses performed on samples collected; and (4) areas of environmental concern (as they have been defined, based on the results of our investigations).

Avram Eule, Esq. July 17, 1986 Page 2

In accordance with our agreement, copies of this report should be forwarded to Mr. Frank Langella and his attorneys, as well as Mr. Stanley Siegel, Acting Chief, Solid Waste Branch, USEPA, Region II.

If you have any questions or need additional information, please call.

Very truly yours,

DAN RAVIV ASSOCIATES, INC.

Dan D. Raviv, Ph.D.

President

DDR/sm

Enc. (4 copies sent)

TABLE OF CONTENTS

SECTION	TITLE	
1.0	SUMMARY OF FIELD INVESTIGATIONS	1
	1.1 Field Investigation I - January 18, 1985	1
,	1.2 Field Investigation II -	2
	October 25-31, 1985	
	1.3 Field Investigation III -	3
	November 27 - December 17, 1985	
	1.4 Field Investigation IV -	4
	January 7, 1986	
2.0	SITE DESCRIPTION AND GEOLOGIC CONDITIONS	5
3.0	RESULTS OF ANALYSES	6
	3.1 Furnace Residue Pile Area	6
	3.2 Incoming Drum Storage Area	7
, , , , , , , , , , , , , , , , , , , ,	3.3 Furnace Area	7
	3.4 Oil Storage Tank Area	. 8
	3.5 Drum Storage and Background Areas	8
	3.6 Buildings	9
• • •	3.7 Ground Water	9
4.0 · ·	AREAS OF ENVIRONMENTAL CONCERN	10
	4.1 Furnace Residue Pile Area - Area I	10
	4.2 Incoming Drum Storage Area - Area II	10
•	4.3 Furnace Area - Area III	10
	4.4 Oil Storage Tank Area - Area IV	11
	4.5 Drum Storage and Background Areas -	11
	Areas V & VI	
	4.6 Buildings	11
		• •
5.0	SUMMARY OF FINDINGS	12
	5.1 Soil and Sediment Quality	12
	5.2 Ground Water	15

LIST OF FIGURES

NUMBER	TITLE	
1	Site Map and Location of Underground Utility Lines	
2	Location of Surface Sediment/Water, Soil Boring and Well Boring Samples and Monitoring Wells	
3	Location of Hydrogeologic Profiles	
4	Hydrogeologic Profile A-A'	
5	Hydrogeologic Profile B-B'	
6	Areas of Environmental Concern	
7	Total PCB Concentrations (ppm) in Soils January 18, 1985, in Soils and Surface Sediments October 25-31, 1985, and in Ground Water (ppb) January 7, 1986	
8.	Total Petroleum Hydrocarbon Concentrations (ppm) in Soils and Surface Samples October 25-31, 1985, and in Ground Water January 7, 1986	
9.	Total Volatile Organic Compound Concentrations (ppb) in Soils and Surface Samples, October 25-31, 1985, and in Ground Water January 7, 1986	
10	Metals, Phenol, and Cyanide Concentrations (ppm) in Soil October 25-31, 1985, and in Ground Water January 7, 1986	
11	Base Neutral and Acid Extractable Compound Concentrations in Soils (ppm) October 25-31, 1985, and in Ground Water (ppb) January 7, 1986	
12A	Ground Water Elevation Contours - January 7, 1986	
12B	Ground Water Elevation Contours - May 19, 1986	

LIST OF TABLES

TABLE NO.	TITLE
1.1	Summary of Soil Boring and Surface Samples and Analyses, Field Investigation I, January 18, 1985
1.2	Summary of Soil Boring and Surface Samples and Analyses, Field Investigation II, October 25-31, 1985
1.3	Summary of Well Boring Samples and Analyses, Field Investigation III, November 27 - December 17, 1985
1.4	Summary of Ground Water Analyses, January 7, 1986
II	Summary of Sample Results by Area: Concentrations of PCB's, TPHC's, VOC's, Metals, Base Neutrals, Acid Extractables, Phenol, Cyanide and Dioxin
·III	Summary of Polychlorinated Biphenyls, Total Petroleum Hydrocarbon, and Dioxin Concentrations in Soils, January 18, 1985, October 25-31, 1985, and November 27-December 17, 1985
IV	Summary of Volatile Organic Compound Concentrations in Soils October 25-31, 1985, and November 27-December 17, 1985
v	Summary of Metals, Phenol, Cyanide and Pesticides Concentrations in Soils January 18, 1985, and October 25-31, 1985
VI ·	Summary of Base Neutral-Pesticide Extractable and Acid Extractable Compounds Concentrations in Soils October 25-31, 1985
VII	Summary of Polychlorinated Biphenyls, Total Petroleum
VIII	Summary of Polycholorinated Biphenyls, Total Petroleum Hydrocarbons, Metals, Acid Extractables, Base Neutrals, Phenol and Cyanide Concentrations in Ground Water January 7, 1986
IX	Summary of Volatile Organic Compounds Concentrations in Ground Water January 7, 1986

LIST OF APPENDICES

APPENDIX NO.	TITLE
A	Well Construction Diagram
3	Well Logs
c	Chain of Custody Forms
D	Laboratory Data Sheets

1.0 Summary of Field Investigations

Four field investigations have been performed by DRAI at Bayonne Barrel and Drum Co., located at 150 Raymond Boulevard in Newark, New Jersey. During these investigations, undisturbed split spoon soil samples, surface sediment samples, and a surface water sample were collected from various locations around the site. Ground water monitoring wells were installed, developed and sampled, and several additional split spoon soil samples were collected from the well borings before the wells were installed. This work was done to establish the quality of soils and ground water at the site. All sample locations are displayed on Figure 2.

The field investigations, discussed below as Field Investigation I, II, III and IV, were performed on: January 18, 1985; October 25-31, 1985; November 27 - December 17, 1985; and January 7, 1986, respectively. All boring and drilling work done at the site was performed by Jersey Boring and Drilling Co., Inc. of Newark, New Jersey. All samples were collected using methods outlined in DRAI Field Procedure Protocols which were submitted with the DRAI Work Plan. Finally, samples were transported for analysis, via a chain of custody, to Gollob Analytical Service Laboratory in Berkeley Heights, New Jersey.

1.1 Field Investigation I - January 18, 1985
On January 18, 1985, DRAI personnel were at Bayonne Barrel and Drum
Co. to sample the furnace residue pile.—A total of nine split spoon
soil samples, BBD1-BBD9, were collected from mine borings (Figure 2).
Borings were located at the nodes of an imaginary grid laid out across
the residue pile. In addition, four surface soil samples, one from
the residue pile (BBD14) and three from the furnace area (BBD11-13),
were collected. All samples, except for BBD 10, were analyzed for
Polychlorinated Biphenyls (PCB) (Table I.1).

For the purpose of waste classification, a composite sample, BBD10, was created by mixing an equal volume of soil from each of three samples, BBD 2,5 and 8. BBD10 was then analyzed for EP-Toxicity parameters:

- (1) Metals:
 - (a) Arsenic (As)
 - (b) Barium (Ba)
 - (c) Cadmium (Cd)
 - (d) Chromium (Cr)
 - (e) Lead (Pb)
 - (f) Mercury (Hg)
 - (g) Silver (Ag)
 - (h) Selenium (Se)

- (2) Herbicides and Pesticides:
 - (a) Endrine
 - (b) Lindane
 - (c) Methoxychlor
 - (d) Toxaphene
 - (e) 2,4-D (2,4-Dichlorophenoxyacetic acid)
 - (d) 2,4,5-TP Silvex (2,4,5-Trichlorophenoxypropionic acid)

(These were the required parameters at the time this analysis was requested).

1.2 Field Investigation II - October 25-31, 1985
Just prior to Field Investigation II, the utility locator service associated with Public Service Electric & Gas Company, was contacted for the purpose of marking out the location of any utility lines that may run underneath the property. They, in turn, contacted several other major utilities. DRAI was informed that two lines exist (Figure 1).

During the second field investigation, soil borings were completed by the auger method, in various areas around the site (Figure 2). Boring locations were chosen to provide general information on conditions around the site, as well as specific target areas, such as the furnace residue pile, the furnace area, and the oil storage tanks area.

In order to examine general site conditions, seventy-six samples, composed of seventy-one split spoon soil samples, four surface sediment samples, and one surface water sample, were collected. Nineteen borings were advanced to various depths between one and fifteen feet, and undisturbed split spoon samples were collected at one foot intervals down to a depth of three feet, and at two feet intervals at depths of five, nine and thirteen feet. Analysis was requested on fifty-two of the seventy-one soil samples and all five of the surface samples (Table I.2).

One of the four surface sediment samples (BBDS1) was collected from sediment accumulation adjacent to the oil separator trench. The remaining three sediment samples (BBDS2-BBDS4) were collected, one from each of the three buildings surrounding the furnace area. All three buildings had contained drum reconditioning equipment. The floor in Building 1 contains 12 drainage canals, with an east-west orientation, along the east wall of the building. All canals were filled with cinder blocks and dry sediment, which appeared to have been swept into the canals. Sample BBDS2 was collected from the west end of the eighth canal (counting north to south). Sample BBDS3 was collected in Building 2 from within a small area enclosed by concrete curbing. Finally, sample BBDS4 was a composite collected from three small floor pits located in Building 3. Again, it appears that sediment accumulation in the building had been swept into these pits. It is from these sediments that the sample was collected.

The surface water sample (BBDW1) was collected at several locations, directly from the oil separator trench.

The list of parameters for which these samples were analyzed includes:

- (1) Polychlorinated Biphenyls (PCB)
- (2) Total Petroleum hydrocarbons (TPHC)
- (3) Volatile Organic Compounds (VOC) plus 15 unidentified peaks
- (4) Hetals: As, Ba, Cd, Cr, Pb, Hg, Ag, Se
- (5) 129 Priority Pollutants plus 40 unidentified peaks including:
 - (a) VOC
 - (b) Base Neutral and Acid Extractable Compounds (BN/AE)
 - (c) Metals:
 - (1) Antimony (Sb)
 - (2) Arsenic (As)
 - (3) Beryllium (Be)
 - (4) Cadmium (Cd)
 - (5) Chromium (Cr)
 - (6) Copper (Cu)
 - (7) Lead (Pb)
 - (8) Mercury (Hg)
 - (9) Nickel (Ni)
 - (10) Silver [Ag)
 - (11) Selenium (Se)
 - (12) Thallium (T1)
 - (13) Zinc (Zn)
 - (d) Phenol
 - (e) Cyanide
- (6) Dioxin

To verify that Dioxin is not present in soils, one sample, BBD17/0-1', collected in the furnace area, has been analyzed. This sample was chosen for Dioxin analysis because materials still remaining in the drums when received for processing, were removed in this area during the reconditioning process.

1.3 Field Investigation III - November 27 - December 17, 1985
During the third field investigation, four monitoring wells (BBDC1-4)
and one monitoring well point (BBDC5) were installed at various
locations on site (Figure 2). Wells BBDC1 and BBDC2 were installed as
background locations. Well BBDC4 was so located to determine water
quality conditions near the furnace residue pile, and well BBDC5 was
so located to determine water quality conditions near the oil storage
storage tanks. In addition, a deep well, BBDC3, was completed near
the oil storage tanks area for the purpose of examining the quality of
ground water at depth.

Additional split spoon soil samples were collected from well borings BBDC1-4, during the augering phase of well installation. A total of

twenty-one soil samples were collected, and analyses were requested on fourteen of the samples (Table I.3). Finally, after installation, the wells were developed using compressed air. Generally speaking, construction of the four monitoring wells is similar. After the initial boring was completed, four inch diameter PVC screen and casing was installed. The anulus was backfilled by pouring sandpack until it filled to a level approximately two feet above the screen. The anulus was then sealed with bentonite. A protective, locking, steel casing was set with cement in the portion of anulus still open. Construction of the deep well (BBDC3) required installation of an eight inch diameter steel casing down to a depth of thirteen feet. This was done to seal off an upper zone of contamination (discussed in more detail later). The well point (Well BBDC5) was constructed using 2½ inch diameter steel screen and casing. Well construction diagrams are presented in Appendix A.

1.4 Field Investigation IV - January 7, 1986

The last field investigation was completed on January 7, 1986. At that time, the four monitoring wells and one well point were redeveloped using a suction pump. A minimum of three well volumes was removed from each well, which was then sampled with a pre-cleaned teflon bailer. All samples were analyzed for VOC's, except for BBDC4, which was analyzed for priority pollutants (Table I.4).

2.0 Site Description and Geologic Conditions

As stated in the DRAI Work Plan, the site covers approximately 20 acres of land located in an industrial area of Newark. The area is characterized by storage tank facilities, rail yards, trucking facilities and used car yards.

Ground surface of the site is approximately ten feet above sea level and slopes downward slightly to the northeast. It is underlain by Pleistocene drift, which fills a buried valley cut into the Brunswick Formation. The Passaic River runs a loop, north of the site, and eventually joins the Hackensack River where it opens into Newark Bay. The River is within a one mile radius of the site.

The property has an elongate shape that trends northeast-southwest (Figure 1). The northern edge of the property is bounded by the Pulaski Skyway, and the southern edge is bounded by the New Jersey Turnpike. The property consists of three main buildings, formerly used in the the drum reconditioning process, and several smaller buildings, used for offices. These facilities are located at the northeast end of the property. The central and southwest portions of the property are characterized, in general, by a black coal-cinder type fill. Approximately one-third of the southwest corner of the property is used for empty drum storage.

Boring log data, accumulated during DRAI field investigations, indicate a slight difference in the type and thickness of the lithologic sequence than was originally stated in the DRAI Work Plan. : Lithologic data from borings around the site indicate that there is a black coal-cinder type fill found from surface down to an average depth of ten feet. The location of hydrogeologic cross-sections are displayed on Figure 3. The fill is underlain by a medium to a coarse grained, well sorted sand that ranges in color from brown to red-brown to dark maroon-brown. Observations of the lithology at depth were made while drilling well boring BBDC3 (Figures 4 and 5). As stated above, the fill is underlain by a medium to coarse sand that lieswithin a depth interval of ten to forty feet. The material observedfrom forty to fifty feet below surface consists of a dark red-brown. uniform, coarse silt. Below fifty feet, observations of cuttings indicated a gradational zone downward into more consolidated material. Once drilling proceeded beyond fifty feet, small fragments of dark red shale were observed. Drilling continued to a depth of fifty-three feet to confirm these observations. These findings are interpreted as a vertical gradation into the upper zone of weathered Brunswick Shale Formation. Boring logs are presented in Appendix B.

3.0 Results of Analyses

Due to the volume of data, samples are not always discussed individually. Instead, the data is presented in tables using two formats. The data presented in the first format (Table II) has been categorized numerically by areas, as they are defined in Figure 6.

The concentration listed for a particular parameter (e.g., metals) represents a total of the individual constituents (e.g., Antimony, Arsenic, Barium, etc.) of that parameter. The data presented in Tables III through IX follow the second format. These data are listed chronologically and numerically. In addition, for those parameters having more than one constituent, each constituent and its concentration are listed. Chain of Custody Forms and laboratory data sheets are presented in Appendices C and D, respectively. In summary, the list of parameters for which soil, surface sediment, surface water, and ground water samples were analyzed includes PCB's, TPHC's, VOC's, Priority Pollutants, Metals, EP-Toxicity, and Dioxin. These parameters were chosen to characterize the site and to establish base line conditions. The results of these analyses were also used to more thoroughly delineate suspected areas of environmental concern. Results, for analyses performed on samples, are discussed below.

3.1 Furnace Residue Pile Area

Forty-two soil samples were collected from the Furnace Residue Pile Area (Figure 2). Thirty-one of these forty-two samples were collected in the immediate vicinity of the furnace residue pile itself. The other eleven samples were collected from other locations within the area. One or more types of analyses, including PCB's, TPHC's, VCC's, a single priority pollutant scan and a single EP-Toxicity, were performed on thirty-four of the forty-two samples collected, and results were reported on all samples (Table II - Furnace Residue Pile Area). Eleven samples, consisting of nine split spoon soil samples (BBD1-9), one surface soil sample (BBD14) and one composite sample (BBD10), were collected during field investigation I. The nine soil samples and Sample BBD14 were analyzed for PCB's. Sample BBD10 is a composite sample which was produced on-site. An equal volume of material was taken from samples BBD2, 5 and 8, mixed on plastic, then containerized. This sample was analyzed for EP-Toxicity.

During Field Investigation II, an additional twenty-one split spoon soil samples were collected from five borings (BBD2, 4, 5, 6 and 7). Sixteen of these twenty-one samples were analyzed for parameters, including PCB's TPHC's, VOC's, and a single sample for priority pollutants. (Note: Some samples collected during Field Investigations I & II possess the same sample number; they are differentiated in the tables, by sampling date.)

The final ten of the forty-two samples are split spoon soil samples collected during field investigation III from well borings BBDC1 and 4, before installation of the wells. Seven of these samples were analyzed for PCB's, TPHC's and VOC's.

Of the eighteen samples analyzed for PCB's, laboratory results indicate that PCB's are present in six of them (Figure 7). Of the twenty-three soil samples analyzed for total petroleum hydrocarbons (TPHC's), TPHC's are present in twenty-two (Figure 8). A volatile organic compound analysis was run on six samples. Results show that four of the samples are contaminated (Figure 9). A priority pollutant scan performed on one sample (BBD4/0-1') revealed the presence of a variety of pollutants, including VOC's, metals, Phenol and Cyanide (Table 10).

Eighteen split spoon soil samples were collected from four borings (BBD 9, 12, 13 & 15) during Field Investigation II. These borings are located in an area defined as the Incoming Drum Storage Area (Figure 6). Analyses were requested on fourteen of the eighteen samples. Analyses for PCB's, TPHC's, VOC's, and Metals were performed on thirteen samples. Results indicate that several of these contaminants are present in soils. A PCB analysis was performed on six samples. Four samples, one from each boring location, were found to be contaminated (Table II - Incoming Drum Storage Area). Three samples were analyzed for VOC's, and results show that all are contaminated. Finally, one sample (BBD15/0-1') was analyzed for metals and several constituents were detected.

3.3 Furnace Area Fourteen samples, consisting of three surface soil, and eleven split spoon soil samples, were collected from the Furnace Area (Figure 2). One or more analyses were requested on thirteen of the fourteen samples collected, and results were reported for ten. Three surface soil samples (BBD 11, 12 and 15) collected during Field Investigation I were analyzed for PCB's. Eleven split spoon samples were collected from three borings (BBD 17, 18 and 19) during Field Investigation II. Results for seven of the eleven soil samples were reported for one or more contaminants including PCB's, TPHC's and VCC's. One sample (BBD17/0-1') was also analyzed for priority pollutants and Dioxin. Laboratory results indicate that PCB's were not present in the three surface soil samples (Table II - Furnace Area). PCB results were reported on the eight samples for which that analysis was requested and was detected in four of the samples. TPHC analysis, performed on seven soil samples, indicated that petroleum hydrocarbons are present in soils. Finally, a priority pollutant scan and an analysis for Dioxin were performed on one sample (BBD17/0-1'). Results indicate that VCC's, base neutral extractables (including Pesticide extractables) compounds, metals, Phenol and Cyanide compounds are also present in soils. Dioxin was not detected.

3.4 Oil Storage Tank Area

Thirteen samples, consisting of one surface water sample, one surface sediment sample and eleven split spoon soil samples, were collected from the oil storage tank area (Figure 2). Analyses were requested and reported for nine of the samples. Two surface samples (BBDS1 and BBDW1) and two soil samples from Boring BBD16 were collected during Field Investigation II. The remaining seven soil samples, all taken during the augering of well boring BBDC3, were collected during Field Investigation III. Analyses requested for these samples include: PCB's, TPHC's, VCC's, and a Priority Pollutant scan.

Results for these samples indicate that many of the contaminants are present in soils (Table II - Oil Storage Tanks Area). Eight samples were analyzed for PCB's and nine were analyzed for TPHC's. Four samples contain PCB's, while all nine samples contain petroleum hydrocarbons. A volatile organic analysis was performed on five of the nine samples, three of which contained VOC's. Finally, a priority pollutant scan was requested on sample BED16/5-8' and 8-10'. PCB's and VOC's, reported as part of the priority pollutant scan, have been discussed above. The remaining types of analyses, which complete the priority pollutant analysis, are metals, Phenol and Cyanide. Several metals and Phenol were detected in relatively minor concentrations. Cyanide was not detected.

3.5 Drum Storage and Background Areas

The Drum Storage and Background Areas consist of those sections, between the process buildings and the southern plant boundary, which have not yet been discussed. —A total of twenty-one samples, all split spoon soil samples, were collected from seven borings. Nineteen of the twenty-one samples were collected from six borings (BBD1, 3, 8, 10, 11, and 14) during Field Investigation III. The remaining two samples were collected from well boring BBDC2 during Field Investigation III.

Analyses were requested on eighteen samples and reported for seventeen of them. Samples were analyzed for one or more parameters, including PCB's, TPHC's and VOC's (Table II - Drum Storage and Background Areas). A priority pollutant analysis was performed on one sample (BBD14/0-1'). Results indicate that VOC's are not present. However, a total concentration of 250 ppm was reported for metals and a total concentration of 830 ppm was reported for base neutral compounds. Acid extractable compounds, Phenols and Cyanide were not detected. Five samples were analyzed for PCB's. Four of the five samples contain PCB's at a detectable concentration. All twenty-one samples were analyzed for TPHC's. Results indicate that all samples contained a detectable concentration of petroleum hydrocarbons.

3.6 Buildings

Three sediment samples (BBDS2-4) were collected, one each, from the three reconditioning buildings. Sample BBDS2 was analyzed for PCB's and VOC's, sample BBDS3 was analyzed for TPHC's and sample BBDS4 was analyzed for PCB's, TPHC's and VOC's. PCB's were detected in samples BBDS2 and BBDS4 at 80 and 11.1 ppm, respectively. Petroleum hydrocarbons were detected in samples BBDS3 and BBDS4 at 850 and 39,400 ppm, respectively, and concentrations of 84 parts per billion (ppb) was reported for sample BBDS4. Finally, volatile organics were detected in sample BBDS4 at 84 ppb.

3.7 Ground Water

A total of six samples, five ground water samples and one field blank, were analyzed (Table VIII). The field blank was made up of store-bought spring water. The types of analyses performed on the samples, with the exception of BBDC4, included PCB's, TPHC's and VOC's. Sample BBDC4 was analyzed for priority pollutants.

PCB's were detected, in a concentration of 53 ppb, in sample BBDC5.

In addition, the laboratory filtered the sediment out of the sample and analyzed the sediment. A concentration of 80 ppm was reported. PCB's were not detected in any other samples. All of the ground water samples, except BBDC4, were analyzed for TPHC's. Concentrations found in samples BBDC1, 2, 3 and 6 are 2.8, 3.7, 4.8 and 1.8 ppm, respectively. The concentration in sample BBDC5, taken in the old storage tank area, was reported at 2,000 ppm. The remaining analyses were performed on sample BBDC4 as part of the priority pollutant scan.

No metals were found in any significant concentrations. Although several metals were detected, all were, at, or just above, the threshold detection limit. A total concentration of 42 ppb was reported for base neutral compounds, and acid extractable compounds, Phenol and Cyanide, were not detected.

4.0 Areas of Environmental Concern

For the purpose of defining areas of environmental concern, the property has been geographically subdivided into six major areas, based on usage, land ownership, and future potential land utilization (Figure 6). These areas are:

- I. Furnace Residue Pile Area
- II. Incoming Drum Storage Area
- III. Furnace Area
 - IV. Oil Storage Tank Area
 - V. Drum Storage and Background Area
- VI. Drum Storage and Background Area (BBD3 & 8)
- VII. Buildings

Activities performed in each area are discussed below in detail.

4.1 Furnace Residue Pile Area - Area I
The furnace residue pile area has been defined by two features.
First, the waste residues generated during the drum cleaning process were disposed of on the furnace residue pile, which is located in this area (Figure 6); and, second, this portion of the property is owned by the principal of Bayonne Barrel & Drum Company. In addition, the remaining portion of this area is used for empty drum storage.
Results of laboratory analyses indicate that a wide variety of contaminants, including PCB's, TPHC's, VOC's and metals, are present in significant concentrations in the furnace residue pile area.

-4.2 Incoming Drum Storage Area - Area II

The incoming drum storage area is defined as the area which extends
from the plant buildings to immediately south of the furnace area
(Figure 6). This area was utilized as the first stage in
reconditioning for the drums about to enter the furnace. Significant
concentrations of each of four types of contaminants, PCB's, TPHC's,
VOC's and metals, were found within this area.

4.3 Furnace Area - Area III

The furnace area is an enclosure created by the three main plant buildings (Figure 6). The furnace, itself, is situated here with a conveyor that passed from the incoming drum storage area, through the furnace, into a drum reconditioning building (Bldg. 2), where the process was completed. A recovery pit, rectangular in shape and perpendicular to the conveyor, was situated beneath the exit port of the furnace. Furnace residue type materials were observed on the ground, adjacent to the northwest side of the furnace. Analytical results revealed the presence of many contaminants. Constituents found included PCB's, TPHC's, VCC's, metals, base neutral compounds and Phenols.

4.4 Oil Storage Tank Area Area IV
The oil storage tank area is located east of the main plant buildings,

on the side closest to the New Jersey Turnpike (Figure 6). One tank (Figure 2) was used for storage of oil which had been liberated during the firing of incoming drums in the furnace area. Only one was observed by DRAI to be directly associated with the oil recovery system. Prior use of the remaining two tanks is unknown. There is also a trench which carried fluids, generated in the furnace area, to the oil separator area and a single underground tank located at the northern terminus of the trench. The exact volume of the tank is unknown. (Several inquiries, combined with information on file, have yielded several different answers.) However, using surface measurements, DRAI has estimated the volume to be 1,000 gallons.

Observations of the subsurface conditions, during the augering phase of borings BBD16, BBD3 & BBD5, revealed a zone of material, between three and nine feet, which appeared to be saturated with oil. Soils in this zone were very soft and fluid-like and offered little resistance when split spoons were actually driven.

The analytical results for samples collected in this area indicated that many contaminants are present in soils. PCB's and TPHC's were found at relatively high concentrations (Table II - Oil Storage Tanks Area). VOC's were detected, as were minor concentrations of metals and Phenol.

4.5 Drum Storage and Background Areas - Areas V & VI
The drum storage area encompasses those areas, between the furnace
residue pile area and the main plant buildings, which have not been
previously categorized (Figure 6). This area is actually divided into
a northern and southern half. The division has been based on a
knowledge of the prospects for land use in the future. Specifically,
the Department of Transportation wishes to acquire the southern half
of the property (Area V - south) to be used for transportation
purposes.

These areas are characterized by a black, coal-cinder type of surface fill to a depth of approximately ten feet below surface (Figures 4 and 5). The areas are used primarily for storage of empty drums, and as lanes for vehicular traffic. Three types of pollutants, petroleum hydrocarbons, VOC's, and metals, were detected in soils within Area V. Petroleum hydrocarbons were found in all of the samples. Metals were detected in three samples, BBD8, 11 and 14. Volatile organics were detected in two of five samples analyzed for VOC's (both from well boring BBDC2).

4.6 Buildings
Three surface sediment samples (BBDS2, 3 and 4) were collected, one each, from the three main buildings surrounding the furnace area (Figure 6). Three types of analyses, PCB's, TPHC's and VOC's, were performed for the purpose of detecting contaminants in the interiors of the buildings. Results indicate that all three parameters are present in significant concentrations.

5.0 Summary of Findings

5.1 Soil and Sediment Quality
Soil samples, sediment samples, one surface water sample and five
ground water samples were analyzed for a variety of parameters
including PCB's, TPHC's, and VOC's. Four samples, each from a
different area, were submitted for analysis of 129 Priority Pollutants
plus 40 largest peaks (PP+40). A PP\$40 scan includes VOC's, PCB's,
Metals, Acid Extractables and Base/Neutrals Extractable Compounds, and
four pesticides and two herbicides. One soil sample was submitted for
analysis of Dioxin.

Analytical results for all parameters, except metals, are presented chronologically by area in Table II. This table was included to facilitate the review of results by area. Results of analyses for PCB's and total petroleum hydrocarbons (TPHC) are listed in Table III. Virtually all soil samples collected were analyzed for TPHC's. Only one sample was analyzed for Dioxin (Table III). Volatile organic compound (VOC) analyses results for both "priority" and non-priority" compounds are found on Table IV. Concentrations for inorganic parameters (metals, phenol, cyanide and pesticides) are presented in Table V. Concentrations for Base/Neutral - Pesticide extractable and acid extractable compounds are included on Table VI. Finally, results of analyses for PCB, TPHC, and VOC concentrations in surface sediment and water samples are presented on Table VII.

An unusual occurance appears to be present in the Oil Storage Tank area, which is unique to this location of the facility. During drilling operations an anomalously high water table was encountered. In addition, at the time of drilling, soils in this area possessed more fluid-like characteristics due to an abnormally high liquid content. This was observed in soils down to a depth of approximately 5 to 8 feet below surface. Concentrations for a variety of parameters reported for one ground water sample (BBDC5) and several soil samples collected in this area were consistantly higher than concentrations found in other areas. The furnace area is the only area which exhibits higher concentrations for several contaminants; specifically, concentrations of PCB's and VOC's are slightly higher. This is most likely a result of the fact that the furnace area is, in essence, the source area since the furnace area is the first location in which materials brought on site are liberated from drums. The liquid materials are then transferred to the Oil Storage Tank area for storage in above and below ground tanks, via a channel which connects. both areas. The concentration for TPHC's is highest in the Oil Storage area. Although the initial source of these liquids may be the furnace area, the oils captured during drum firing are stored, in . volume, in the Oil Storage Tank area thus creating a new primary source.

Polychlorinated Biphenyls. In general, results for PCB analyses indicate that this contaminant is distributed throughout the site. Concentrations reported, range from "not detected" at 1 part per million (ppm), to 320 ppm. The highest concentrations are found in the furnance and oil storage tank areas. Fluids, generated as a result of drum firing operations in the furnace area were pumped via a drainage channel into the storage tanks. Therefore, the relatively high concentration found in the storage tank area is substantiated by the fact that these materials have been readily transferred into the tanks area. PCB's were also detected in soils located in the incoming drum storage area, the furnace residue pile, and the drum storage and background areas.

A comparison of results obtained from duplicate analyses of samples performed by the laboratory, indicates a high degree of correlation in both compound identification and concentrations. The correlation between one sample (BED17/1') a field duplicate of it (BED17/S), collected in the furnace area, does indicate some disparity. However, in our opinion, this is a result of the method used to collect the duplicate. The two samples, the original and the duplicate, were collected by driving two separate split spoon samplers into the ground. The spoon sample locations were within a one to two foot distance of each other, but the soil samples can not be considered as typical duplicates since they were not from the same sample. Instead, each sample was collected separately, one from each spoon sample recovered.

Total Petroleum Hydrocarbons....With respect to total petroleum hydrocarbons, all soil samples collected during the field investigations of October and November 1985, and submitted to the laboratory, were analyzed for TPHC's. Concentrations found in samples collected from the surface to a depth of ten feet, all exceed the maximum permissible concentration allowed in soils. With the exception of one sample, BBDC1/10-12' (410 ppm), the concentration of TPHC's in all samples collected below a depth of ten feet were below the maximum permissible concentration for TPHC's in soil.

When reviewing these results, it should be noted that this property was used as a disposal area for coal and ash. These materials were an end product of a coal-burning, electric power generating station operating in the area. A review of Figures 4 and 5 reveals that the depth of this coal-ash fill is approximately ten feet and exists as the uppermost layer, from the surface down to a depth of ten feet.

For reasons as explained in the discussion of PCB's, TPHC results for sample BBD17/1' and its duplicate BBD17/S display some disparity; however, results for duplicate analyses performed by the laboratory exhibit a high degree of correlation.

Volatile Organic Compounds. In general, volatile organic compounds in soils for priority and non-priority constituents were limited to specific areas only. VOC concentrations are significant in soils found in the incoming drum storage, furnace, oil storage tank and furnace residue pile areas, whereas results for soils analyzed outside the specified boundaries of these areas indicate that VOC's were not even present in detectable concentrations. Priority VOC's were detected in a range from "not detected" at 20 ppb to 22,553 ppb, and non-priority VOC's were detected in a range from "not detected" at 20 ppb to 66,035 ppb. The appearance of VOC's in soils is, in general, restricted to those areas in which materials handled and liberated in the process of reconditioning drums are most likely to be found. Thus, a noticeable distinction is present between contaminated and uncontaminated soils. Only one sample, (BBDC1/5-7'), collected outside any of the above named areas, contain significant concentrations of VOC's with reported values of 27.0 ppb and 2,160 ppb for priority and non-priority VOC's, respectively. VOC concentrations were found mostly within two depth intervals, 0-1' and 5-7', and where present in depths below seven feet, did not exceed the maximum permissible concentration allowed in soils.

One surface water and two surface sediment samples were analyzed for VOC's. VOC's were detected in one of the samples; however, concentrations do not exceed the maximum permissible concentration allowed in soils.

Inorganic Parameters. With respect to inorganic parameters, including metals, phenol and cyanide, some contaminants are present. Results for these parameters were generated as part-of a PP+40 scan requested on four soil samples (BBD4/1', BBD14/1', BBD16/5-8 & 8-10' and BBD17/1'), one each from four different areas of the facility. Metals were found in a range of concentrations from "Not detected" for Thallium, to 15,500 ppm for Copper. The highest concentrations were found in the furnace and furnace residue pile areas. Metals showing the highest concentrations include Cadmium, Chromium, Copper, Lead and Zinc. Concentrations for these metals in the remaining two areas, in which the analyses were requested (Oil Storage Tank and Background), are substantially less. The remaining metals for which soils were analyzed were either not present, or present in relatively lower concentrations.

Phenol was detected in three of the four areas. Concentrations range between NDO.5 to 20 ppm. Phenol was detected in the furnace, furnace residue pile and oil storage tank areas. Phenol was not detected in a Background area.

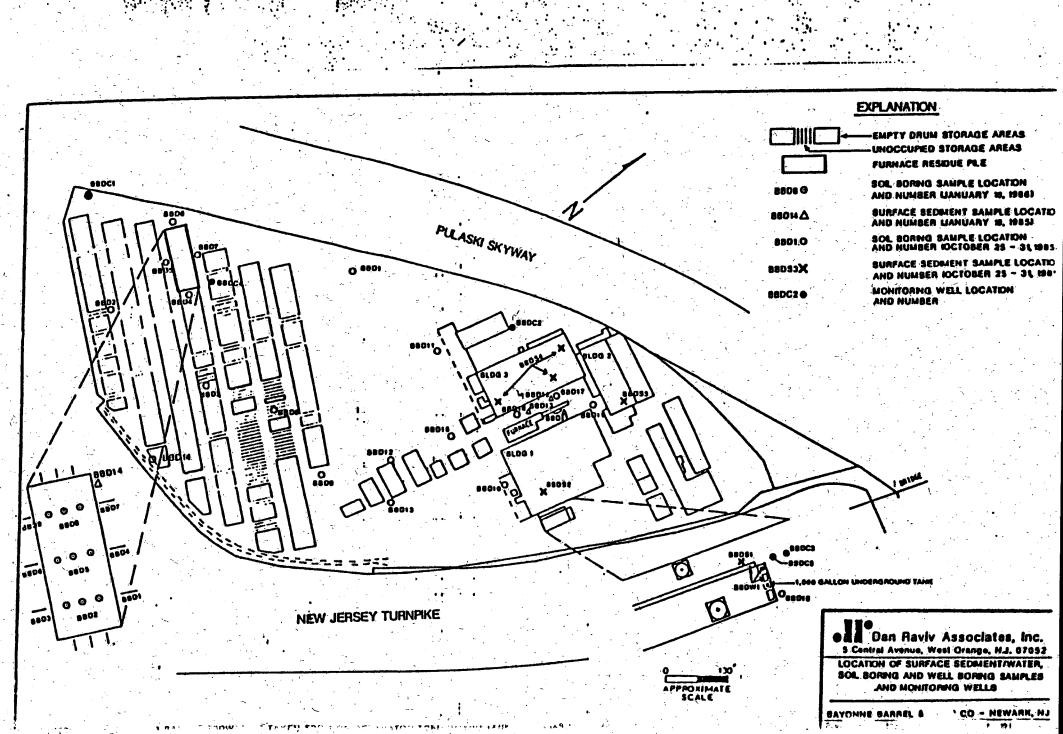
Finally, Cyanide was reported in a range of concentrations from NDO.1 to 2 ppm in the furnace and furnace residue pile areas.

Base/Neutral and Acid Extractable Compounds. B/N, AE analysis was requested on four samples (as listed "Inorganic parameters). The soils are generally clean with respect to these compounds. Concentrations for base neutrals were reported in a range from ND9.5 to 850 ppm. Acid Extractable compounds were not detected.

5.2 Ground Water

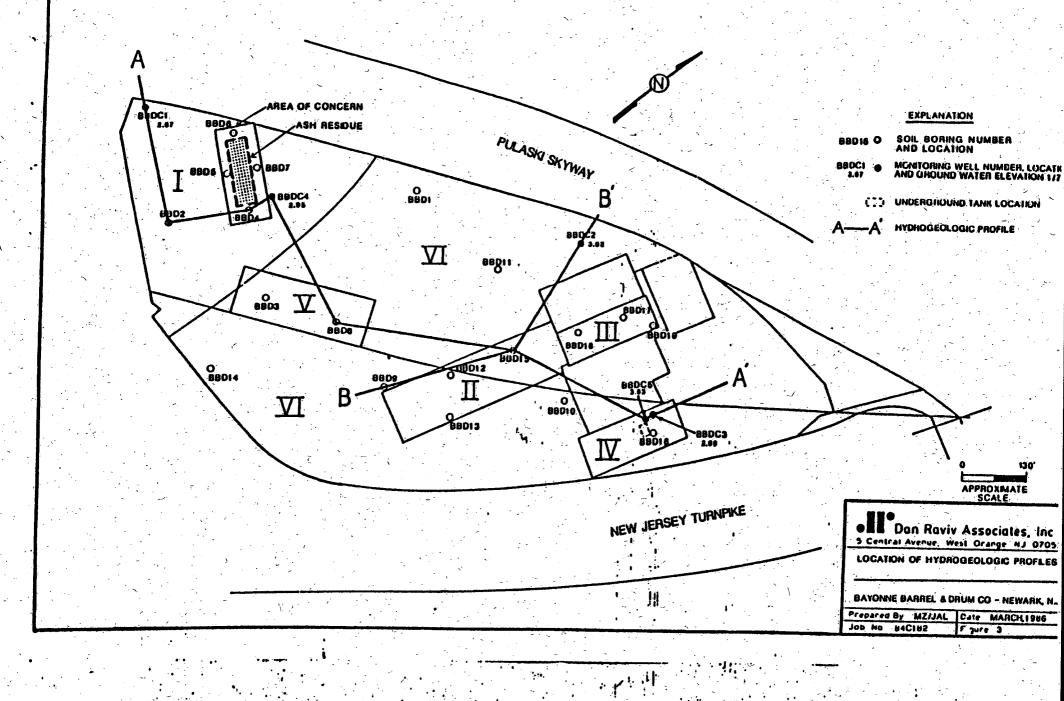
Polychlorinated Biphenyls. A PCB analysis was requested for four of the five ground water samples including BBDC1, 2, 3 and 5. Contamination was detected in Well BBDC5 only, in the oil storage tank area, at a concentration of 53 ppb. Results of an analysis performed on sediments which were separated, from the water sample, by the laboratory, indicate that they also contain PCB's at a concentration of 80 ppm.

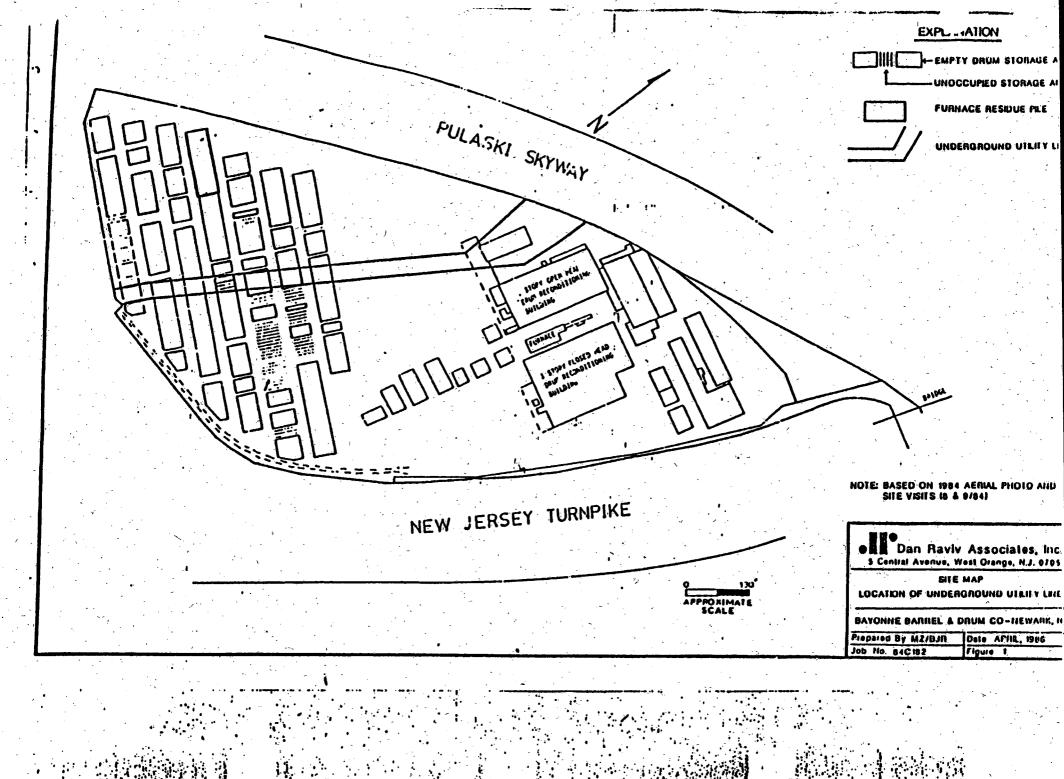
Total Petroleum Hydrocarbons. A TPHC analysis was requested on four (same as listed above) of the five ground water samples. The range of concentrations reported extends from 2.8 to 2,000 ppm. Concentrations for samples BBDC1, BBDC2, BBDC3 and BBDC5 were 2.8, 3.7, 4.8 and 2,000, respectively. A detectable concentration for TPHC's was reported (1.8) ppm) in the trip blank. As a result, the values reported for BBDC1-3, (2.8, 3.7 and 4.8 ppm) that are of the same magnitude, are questionable. However, since the results reported for sample BBDC5 are three times greater in magnitude, this is a positive indication that contamination is present in the sample.

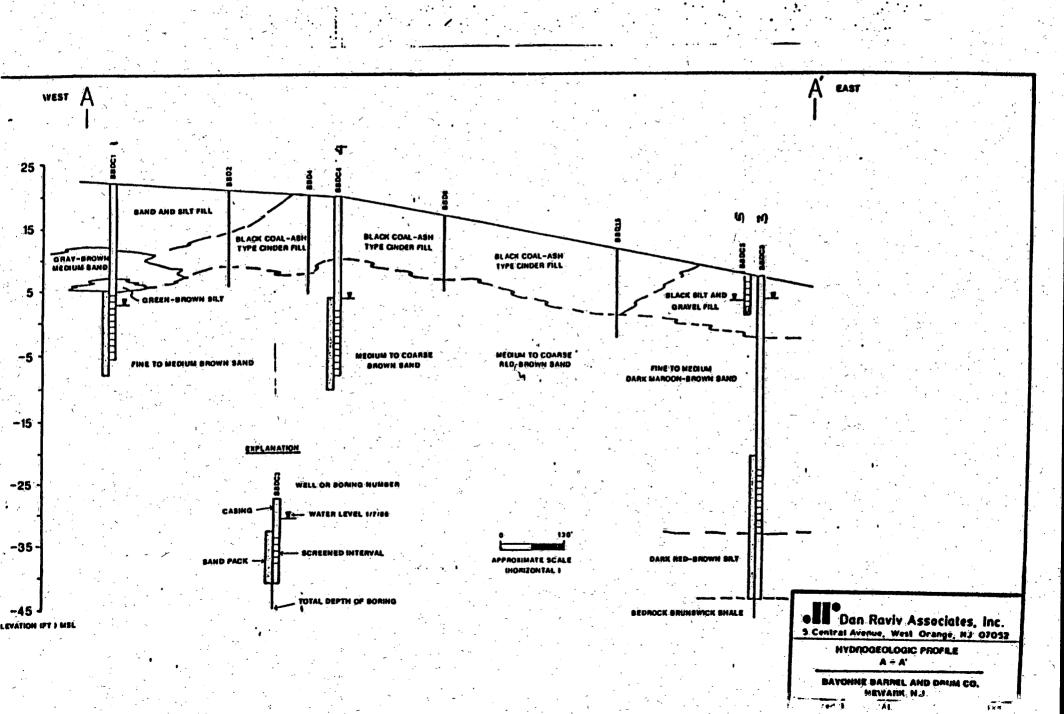

Volatile Organic Compounds. VOC's were detected in all five ground water samples. However, there is a distinct difference between the total priority and non-priority concentrations reported for water sample BBDC5 when compared to the values reported for the remaining four ground water samples. For the priority VOC's, values were reported between "not detected" and 1,353 ppb. The range of values reported for non-priority VOC's falls between "none-detected" and 4,620 ppb. The total concentration reported in well BBDC5 for each set of parameters, priority and non-priority VOC's, exceeds the maximum allowable concentration for VOC's in ground water. For concentrations reported in the remaining four wells, BBDC1, 2, 3 and 4, the combined sum of priority and non-priority VOC's concentrations found in each does not exceed the maximum allowable concentration for VOC's in ground water.

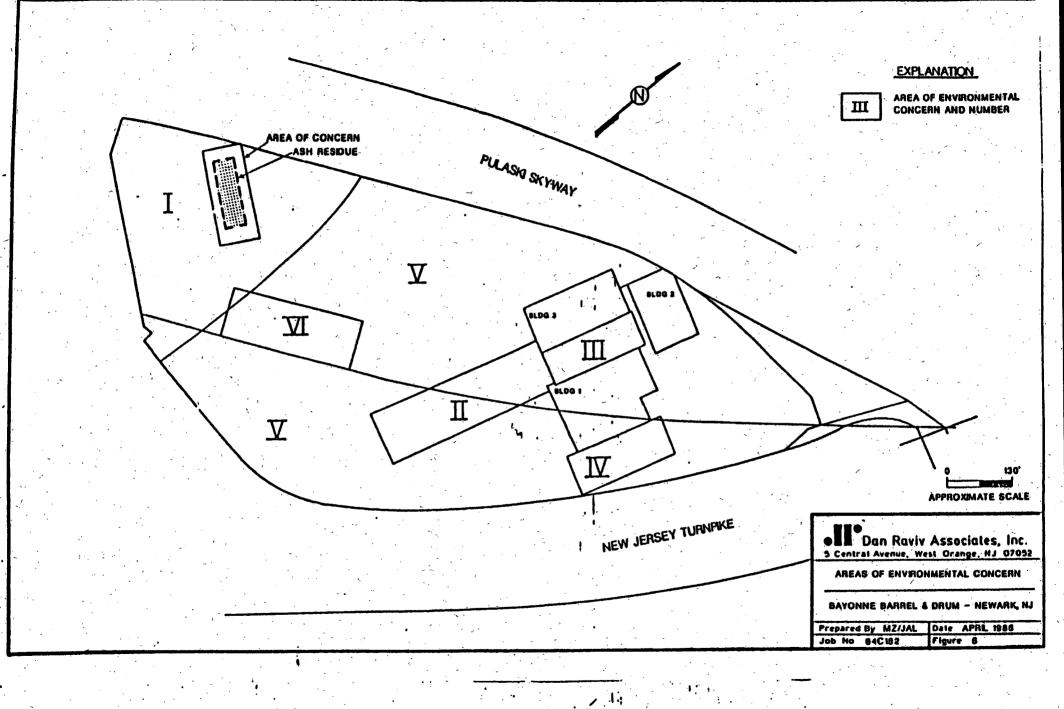
Inorganic Parameters. The inorganic parameters including metals, phenol and cyanide were requested as part of a PP+40 analysis requested on ground water sample BBDC4. With respect to these parameters, ground water was clean. Concentrations reported for all metals were reported as "not detected" or at or very close to the method detection limit, for each metal, in ground water. Both phenol and cyanide were "not detected".

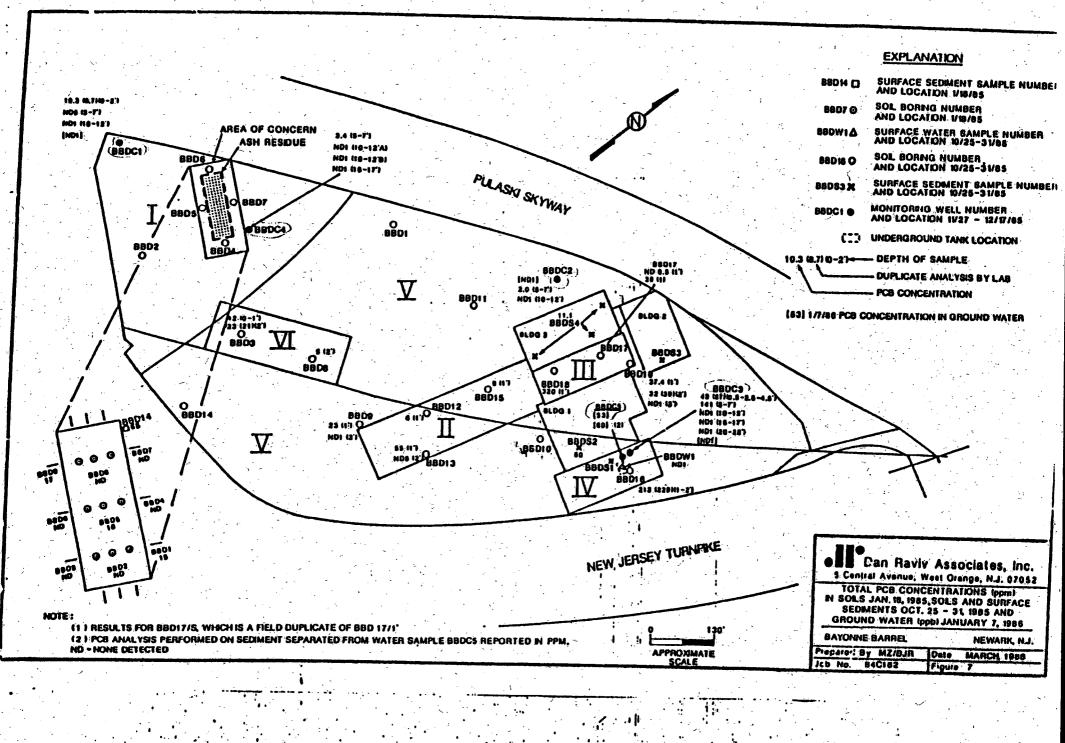
Base/Neutral and Acid Extractable Compounds. B/N and AE compound analyses were also reported as part of the PP+40 scan requested on water sample BBDC4. The sum total concentration of B/N compounds reported is 42 ppb while AE compounds were "not detected".

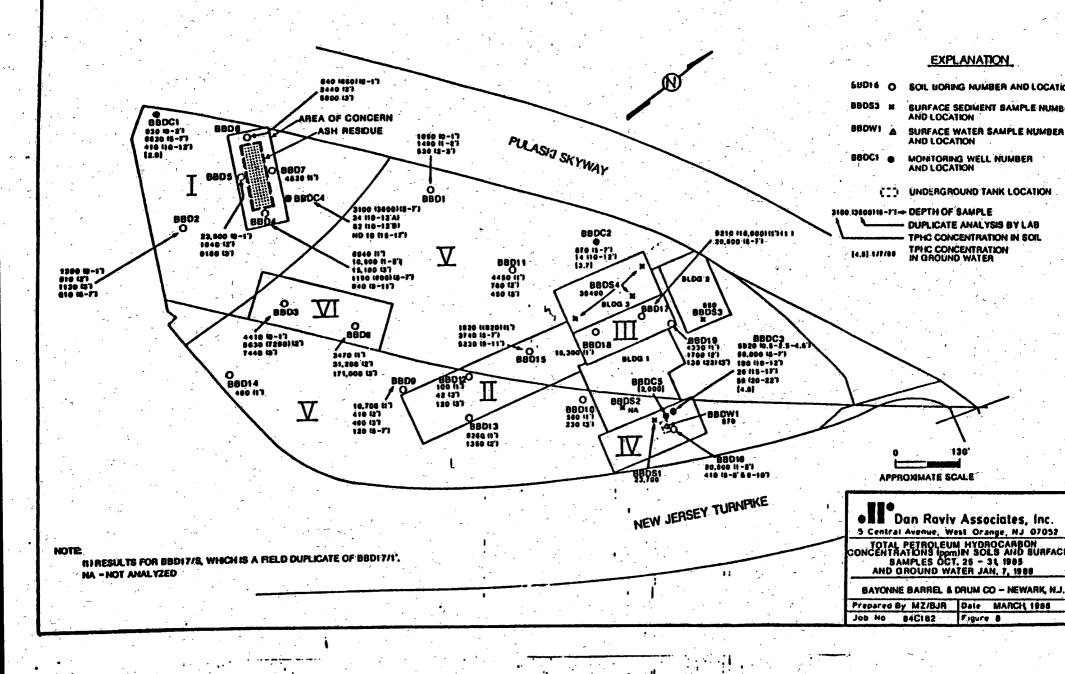

Dioxin. One sample BBD17/1', taken from the furnace area, was submitted for analysis of Dioxin. A concentration of "not-detected" at a method detection limit of 0.320 ppb was reported.

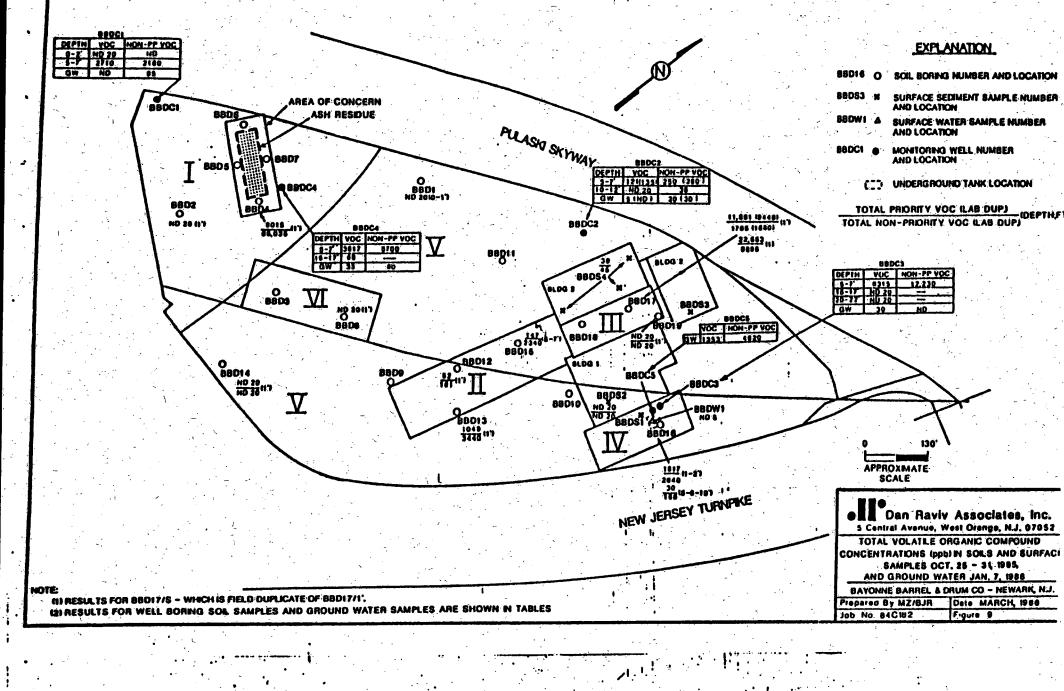

Figures

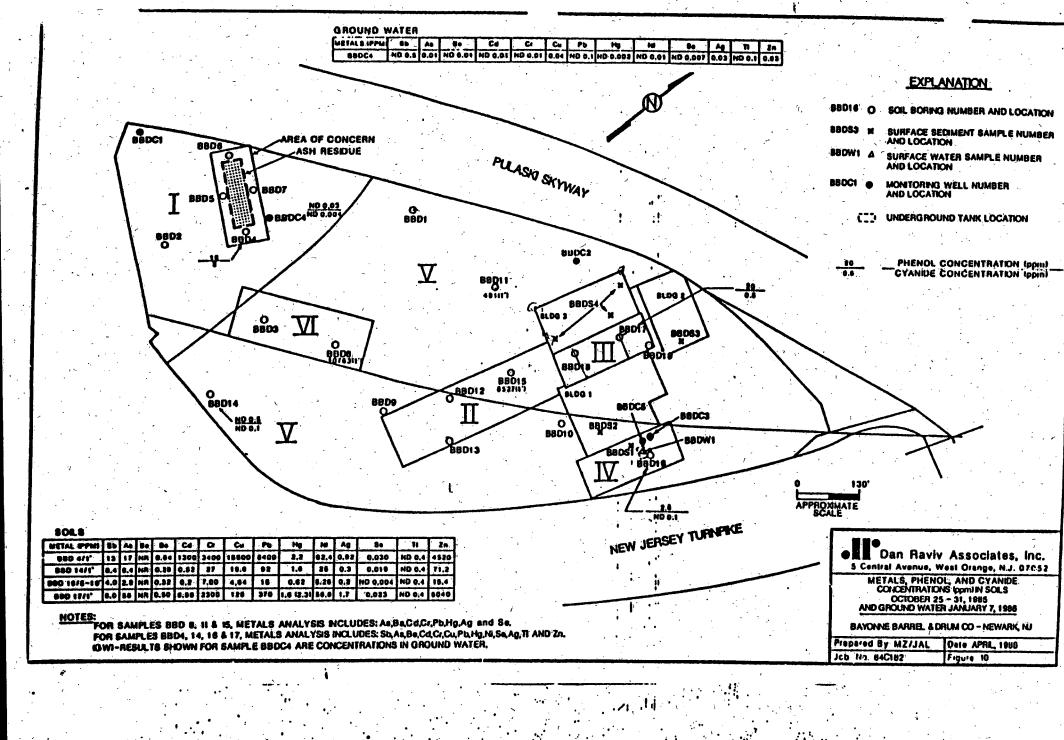


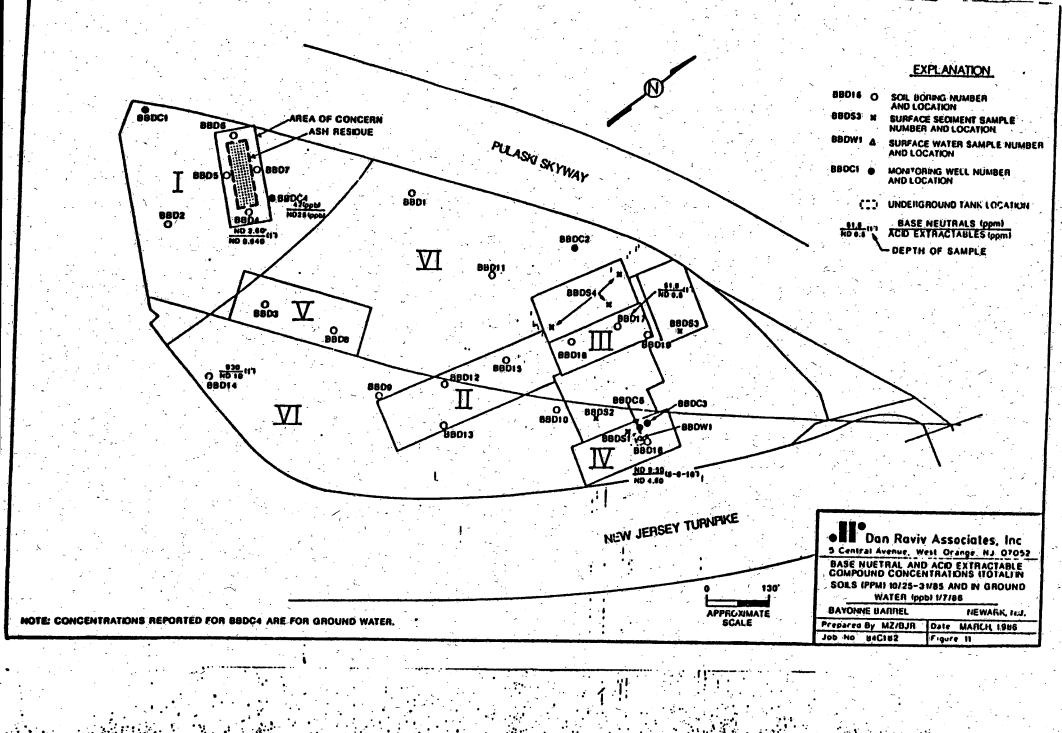

APPENDIX A

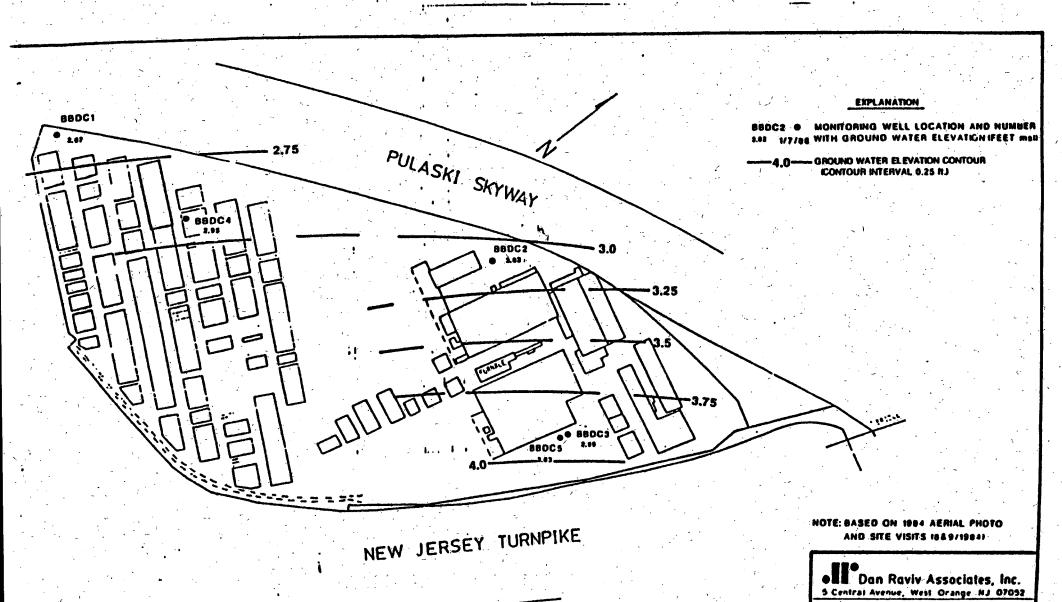

RESULTS OF GROUND WATER ANALYSES
JUNE 1984

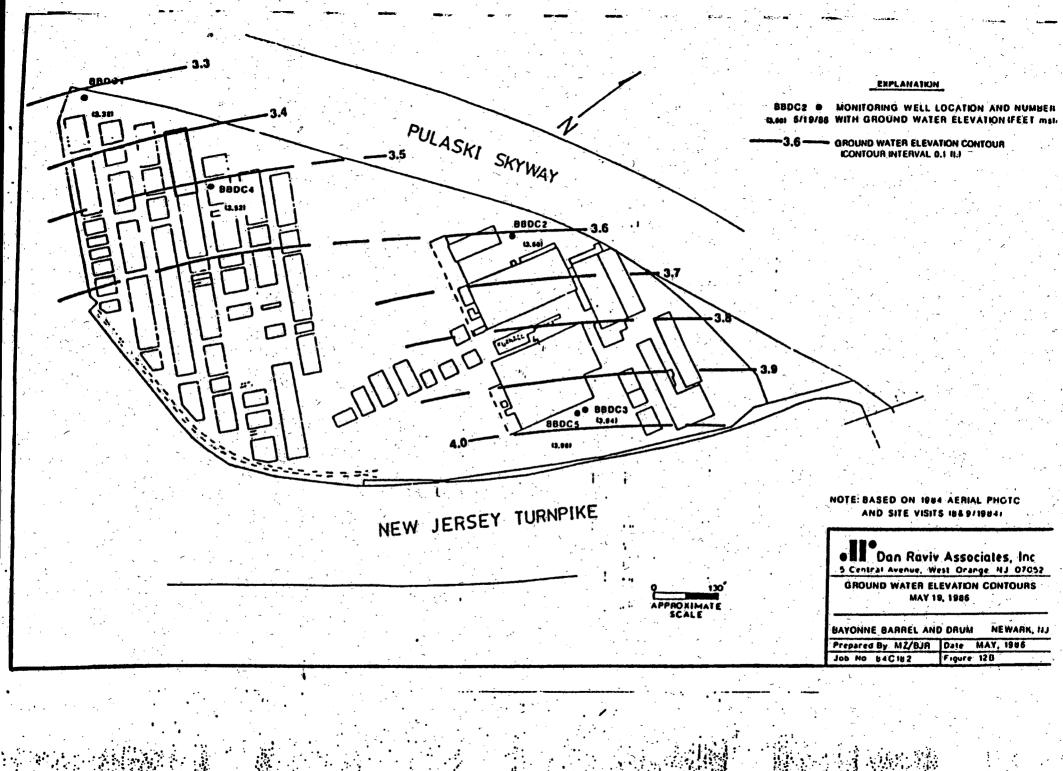











APPROXIMATE

GROUND WATER ELEVATION CONTOURS
JANUARY 7, 1948

gure

MUNG GHA JANNAG SHHOYAG

Prepared By MZALIR Date MAY, 1986

Tables

Table I.1

Summary of Soil Boring and Surface Samples and Analyses
Field Investigation I
January 18, 1985

Boring/Soil Sample No.	Sample IntervalDeep (feet)	Analyses Requested
BBD1	0-2	PCB
BBD2	0-2	PCB
BBD3	0-3	PCB
BBD4	0-3	PCB
BBD5	0-3	PCB
BBD6	2 0−3	PCB
BBD7	0-3	PCB
BBD8	0-3	PCB
BBD9	0-3	PCB
BBD10	Composite (1)	EP-Toxicity
BBD11	Surface Surface	PCB
BBD13	Surface	PCB
BBD14	Surface	PCB

⁽¹⁾ Sample BBD10 is a composite of samples BBD 2,5 and 8. Analysis includes metals (As,Ba,Cd,Cr,Pb,Hg,Ag and Se), Eerbicides (Endrine, Lindane, Methoxychlor, and Toxaphene) and Pesticides (2,4-D and 2,4,5-TP Silvex).

lauie 1.2

Summary of Soil Boring and Surface Samples and Analyses Field Investigation II October 25-31, 1985

Boring/Soil Sample No.	Sample Interval Depth (feet)	Analyses Requested
BBD1	0-1	TPHC, VOA.
	1-2	[TPHC] (2)
	2-3	[TPHC]
	5-7	[TPHC]
		(LEUC)
BBD2	0-1	TPHC, VOA
	1+2	[TPHC]
	2-3	[TPHC]
	5-7	TPHC
	9-11	NR
	13-15	NR
	43-43	NR
BBD3	0-1	DCD MDUC
8803	1-2	PCB, TPHC
	1-2 2-3	[PCB, TPHC]
	د-2 مرح	[TPHC]
979 A		
BBD4	0-1	PP, TPHC
	1-2	TPHC
	2-3	[TPHC]
· · · ·	5-7	[TPHC]
and the second of the second	9-11	[TPHC]
•	. 13–15	NR
BBD5	0-1	TPHC
N.	1-2	`. [TPHC]
	2-3	[TPHC]
BBD6	0-1	TPHC
	1-2	[TPHC]
	2-3	[TPHC]
BBD7	0-1	TPHC -
	1-2	NR
	2-3	NR
BBD8	0-1	TPHC, VOA, Metals
,	1-2	[PCB, TPHC]
	2-3	
		[TPHC]
	5-7	TPHC
	7-9	NR
	9-11	NR

⁽¹⁾ NR = Analysis Not Requested.

⁽²⁾ Request for analyses listed in brackets was made on 2/5/86.

iable 1.2 (cont'd)

Summary of Soil Boring and Surface Samples and Analyses Field Investigation II October 25-31, 1985

Boring/Soil Sample No.	Sample Interval Depth (feet)	Analyses Requested
BBD9	0-1 1-2 2-3 5-7 7-9	PCB, TPHC (1) [PCB, TPHC] TPHC [TPHC] NR
BBD10	9-11 0-1 1-2	TPHC (PCB, TPHC) (3)
BBD11	2-3 0-1 1-2	[TPHC] TPHC, Metals TPHC
BBD12	2-3 r 0-1 1-2	[TPHC] PCB, TPHC, VOA [TPHC]
BBD13	2-3 0-1	[TPHC] PCB, TPHC, VOA
		[PCB, TPHC] (TPHC) VOA
BBD14 BBD15	0-1	PP, TPHC PCB, TPHC, Metals
	1-2 2-3 5-7 9-11	NR (TPHC) TPHC, VOA
	12-14 15 (Field Blank)	[TPHC] NR VOA
BBD16	1-2 5-8 & 8-10	VOA, [PCB, TPHC] PP, TPHC

⁽¹⁾ For parameters listed in brackets, request for analyses was made on 2/5/86.

⁽²⁾ NR = Analysis not requested.

⁽³⁾ For parameters listed in parenthesis, request for analyses was made 2/5/86; however, the sample was either lost or not analyzed due to insufficient volume.

Table I.2 (conc'd)

Summary of Soil Boring and Surface Samples and Analyses Field Investigation II October 25-31, 1985

Boring/Soil Sample No.	Sample Interval Depth (feet)	Analyses Requested
BBD9	0-1 1-2 2-3 5-7 7-9 9-11	PCB, TPHC (1) [PCB, TPHC] TPHC [TPHC] NR NR
BBD17	0-1 s(1) 2-3 5-7 9-11	PP, TPHC, Dioxin PCB, TPHC, VQA (PCB, TPHC) [TPHC]
BBD18	0-1 1-2 2-3	PCB, TPHC (PCB, TPHC) (PCB, TPHC)
BBD19	0-1 1-2 2-3	PCB, TPHC, VOA [PCB, TPHC] [PCB, TPHC]
BBD20 BBDW1 BBDS1 BBDS2 BBDS3 BBDS4	Surface Water Surface Sediment Surface Sediment Surface Sediment Surface Sediment Surface Sediment	PCB, TPHC PCB, TPHC PCB, VOA TPHC PCB, TPHC, VOA

⁽¹⁾ BBD17/S is a field duplicate of BBD17/0-1'.

⁽²⁾ For parameters listed in parentheses, request for analyses was made 2/5/86; however, the sample was either lost or not analyzed due to insufficient volume.

⁽³⁾ For parameters listed in brackets, request for analysis was made 2/5/86.

Table I.3

Summary of Well Boring Samples and Analyses Field Investigation III November 27 - December 17, 1985

Boring/Soil Sample No.	Sample Interval Depth (feet)	Analyses Requested
BBDC1	0-2 5-7 10-12 15-17 20-22	PCB, TPHC, VOA VOA, [PCB, TPHC] PCB, TPHC NR NR
BBDC2	5-7 10-12	PCB, TPHC, VOA PCB, TPHC
BBDC3	0.5-2.5 & 2.5-4.5 5-7 10-12	[PCB, TPHC] (2) PCB, TPHC, VOA (PCB, TPHC)

	-: 30-32		NR .		
	35-37		NR		
	40-42	.	NR	e e e e e e e e e e e e e e e e e e e	
BBDC4 *-	0-2	,	NR		
	5-7 10-12A		PCB,	•	
	10-12B 15-17		PCB,	TPHC, VOA	
BBDC5	No Sample		PCB		

⁽¹⁾ NR = Analysis Not Requested.

⁽²⁾ For parameters listed in brackets, request for analyses was made on 2/5/86.

⁽³⁾ For parameters listed in parentheses, request for analyses was made on 2/5/86; however, the sample was either lost or not analyzed due to insufficient volume.

Table I.4

Summary of Ground Water Analyses Field Investigation IV January 7, 1986

Well Sample No.	Analysis Requested
BBDC1 ·	PCB, TPEC, VOA
BBDC2	PCB, TPEC, VOA
BBDC3	PCB, TPEC, VOA
BBDC4	129 Priority Pollutants +40
BBDC5	PCB, TPEC, VOA
BBDC6 (1)	PCB, TPHC, VOA

⁽¹⁾ Sample BBDC6 is a field blank.

Table II

Summary of Sample Results by Aren:
Concentrations of PCS's, TPHC's, VOC's, Base/Heutrals,
Acid Extractables, Phenol, Cyanide & Dioxin
Bayonna Sarrel & Drum Company

,		PARAMETER: (unite)	PCB's (ppm)	TPHC's	VOC 'a PRIORITY (Total) (ppb)	VOC'e NON PRIORITY (ppb)		S/X (Totel) (ppm)	AE (Total) (ppm)	PHENOL CYANIDE (ppm)
esple Date	Seeple No.	Sample Depth (£t)		2						
URNACE RE	ESIDUE P	ILE AREA								,
enuary 16	8, 1945 880 1 880 2 880 3 880 4 880 5	0-2 0-2 0-3 0-2 0-2	15 - PD 10 - ND 10 - ND 10 - 16					•	1	
	880 6 880 7 880 8 880 9 880 1(NO 10 NO 10 NO 13 17-							
stober 25	3-31, 196 88D 2 88D 2 88D 2	0-1 1-2 2-3 5-7		1, 390 - 810 1, 130 610	NO 20	ND 20	f,			
	88D 4 88D 4 88D 4 88D 4	0-1 1-2 2-3 5-7 9-11	•	6,040 10,500 15,100 1,190 (9	9, 015 - 00)	66, 035		ND 0.640	ND 2.60	15 / 2
	88D 5 88D 5 88D 5	0-1 1-2 2-3		23, 800 1, 040 9, 180						
	880 6 880 6 880 6	0-1 1-2 2-3		640 (6) 2,440 5,905	30)	*****	*******	*		
	100 7	0-1		4, 520			*****	*********		
			.====		*********	*********	******			*************

ND - Not detected at or above minimum detection limit indicated.

C - Composite of samples RBD 2, RBD 3 & RBD 8.

Laboratory duplicates in parentheses.

If no entry, analysis was not requested.

Table II (cont.) Success of Sample Regults by Areas Concentrations for PCS's, TPMC's, VOC's, Saco/Moutrals, Apid Extractables, Phonel, Cyanide & Diomin Seyonne Sarrel & Drum Company

			Bayonne (Jarrol & Dr	un Campanj	, <u></u>				
		PARAMETER: (unite)	PCB's (ppa)	TPHC's (ppa)	(totel)	TOC'é PRIORITY (ppb)	B/H (Total) (ppa)	AE (Tatel) (ppm)	PHENOL GYANIE (ppn) (ppn)	
Bomple Date	Sample No.	Sample Depth (ft)					,			
URHACE BE	SIDUE P	ILE ABEA toont.		********	*******			********		****
lovember 2	7 - Dec	eaber 17, 1985					*********	********	**********	*******
	BBDC BBDC	5-7	10.3 (4.7) - ND 5 NO 1	830 - 8,630 - 410:-	ND 20 2,710-	ND 20 2, 160				•
	DODG			, 100* (2, 600	0) 0,817-	3,700			**********	*******
	980C	10-128	MD 1 MD 1	34 82	-			•		٠.
	BBDC	l 19-17	ND 1	MD 10	56	AD 20			-	•
ienuary 7,	198 <u>5</u>	Ground Valor	4D 10 (1)		3 3	8 0	421ppb	NO 23 ppb	ND 0.03 ND 0.0	104
URNACÉ ARI	EA				*******	**********				
envery 18.	1985	• • • • • • • • • • • • • • • • • • • •	, ·		***			\$ 		
•	880 13 890 13	ourtee	ND 10 - ND 10 -						<u> </u>	
tober 25	-31, 196 880 17		ND 0.3 (1)	9, 210	11,561		51.6 -	ND 0.3	20 0.5	NO 0.32
	880 17 880 17	3-7	4	16,000 - 20,800 - 16,300 -	19, 4461	11,680)				
*******	BBD 19	0-1	37.4 ° 32 (39) °	4, 330- 1, 700	ND 20	ND 20 -			***********	
	880-19	2-3		130 (23)		· · ·			* * *	
CONTRO DE	UN STOR	LGC AREA		******	••••••	************				
stober 25-	31, 196)			•					
	880 9 880 9	0-1		10,700						. •
	ADD. 9	1-2 2-3	an T	410 480			,			٠
*******	880 9	9-7 	,	120				•		1
•	880 12 880 12	0-1 1-2	.	100	52	194	9, 13	AD C.S	/# **	******
	88D 12	2-2		120	. :					2 .
	890 13 880 13	0-1 1-2	55 110 5	0, 260 1, 330	8,049 -	3, 440	27.01 -	#D 0.3		******
	880 15 880 15 880 15	0-1 ¹ 3-7 9-11		20 (1, 620) 3, 740 8, 230	6 1/2	2, 340	31. 24 -	10 O.S	*********	******
loss	HD Lob	results are papele BBD17/8 is of Mot detected oratory duplication on the motory, analysis	h Eleid dupli Lt or above e Led in marent	oste of est Inlava dete hance	iola BAD17	/0-1.	r the sample list	ed.	1000000000	P*************************************

Table II (cont.)

Summary of Sample Results by Areas

Concentrations for PCS's, TPRC's, VOC's, Sees Neutrals,
Acid Entractables, Phenol, Cyanide & Dioxin
Sayonne Sarrel & Drum Company

•			Seyenne l	Pettol F Di	rum Company				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		********
		MANETER: lunito)	PCB's ippel	TFHC's (ppm)	VOC's PRIGRITY (Total) (ppb)	(bbp) brickita non acc.m		B/H (Total) (ppa)	4E (Total) (pps)	PRENOL. (ppa)	(ppb)
Scople Dete	Scopia No.	Sample Depth (ft)	 	1							
IL STORAGE										,	,
Sotober 23-				•		٠	_			, .	
30/00di 33-	31, 1963 880 16	1-2	- 213 (2		1817	2640				2.6	ND 0.1
	DAD 16	5-8 4 8-10	-	410 :	.30	166		ND 9.50	ND 4.40		25 0
	BADS 1	euricos >	- 130 101	23700 - 670 -		• ,					- ·
										.,.,	
lovesber 27	BBDC 3	ber 17, 1983 0.5-2.5 & 2.5	-4.5 - 43 (:	371 5920 -		_		. 1			
	880C 2	9-7	~141	. 59000	6315	12230					
.•	BADC 3	10-12	ND 1	190 -		ND 20	•			• •	
	880C 3	15-17 20-22	ND 1	78 . 38	ND 20	ND 20				•	
lanuary 7,		in the second			. •	•			•		
		Oround Vater Oround Vater	#D 1 (ppl) -53 (ppb) -60 (1)	2000	. •		1		•		1

RUM STORAG	E AND DA	CKROUED ARKAS	-	1							•
Datober 25-								• •			
	880 1	0-1 1-2		1480 ~	ND 20	ND 30"					
	880 1 880 1	2-3	•	530	•						
			********						***********		**********
2.4	380 3	0-1	- 42	4410 21) 9630 (1							
	880 3 T	1-2 2-3	,25 1	7440.	12701						*
	880 B	0-1		3470 - 31200 -	ND 20	ND 20	٠.		•	٠.	
	88D 8	3-3 1-2	5	173000				* .	•		
******						******			*******		**********
*	880 10	0-1 2-3	•	230	• .	• • •					
	BBD 10	. E.Z			,						**************
	88D 11	0-1		4450	•	•		•			
	11 000	1-2	* -	, 760				•			
	880 11	2-3		1 450							
	890 14	0-1		460	MD 20	MD 20		830	#D 10	ED 0.5	ND 0.1
			*********					, ,			
			2	470	121 (135)	250 (2601	1 3 3	;		
lovesber 27		3-7 1		,	ND 20	36			,	• '	
ovenber 27	830C 2 880C 2	3-7 \ 10-12	HD 1	14	. ND 20						
	880C 2			. 14	AD 20						
	880C 2				MD 20						
VILDINGS	880C 2 880C 2			14	MD 20		,				
	880C 2 880C 2 81, 1945 8806 2	[0-12 			ND 20	ND 20	*****				
WILDINGS Wicher :23-1	880C 2 880C 2	10-12		950 9400			-				

Concentrations in Soils January 18, October 25-31, 1985 and November 27 - Docember 17, 1985 Bayonne Barrel & Drum Company

	PARAHETEI Somplo dat):	PCB's (pps)	PCB's (p) 10/25-31, 11/27 - 12/	85 Hydrocarhon	n (ppm)	Dioxin (ppb) 10/25-31/85
	nignation, epth (ft)	, ,						
) 1,1/0-) 11/1- (11/2-	2			- ND 10 (1)		- 4150 - 760 450		
12/0- 12/1- 12/2-	2	• • • • • • • •		- ND 20 (1)	- 6	100 42 120		
13/0-1				- ND 10 (1)	- 55 · ND 5	8260 1350	w # # # # # # # # # # # # # #	
15/0-				- 65 (1)		- 460 1820	(1820)	
15/5- 15/9-	7					- 3710 5230		
16/1-5 16/5-1					- 213 (229) 20800 410		
17/0-1 17/8 17/5-1					ND , 0 . - 28 	5 - 9210 -16000 -20800		0.320
14/0-	l				- 320	16300		
19/0-1 19/1-2 19/2-3				,	- 37.4 - 32(39 ND 1) - 4330 - 1700 - 130	(23)	
C1/0-2 C1/5-7 C1/10-					- 10.3(ND 5 ND 1	8.7) - 830 8630 410		
C2/5-7 C2/10-			kan Kat <u>i</u> gan		2 ND 1	870 14		N
C3/0.5	-2.5, -4.5				- 43(57	5920		
C3/5-7 C3/10- C3/15- C3/20-	12 17				- 141 ND 1 1 ND 1 ND 1	\$ 59000 \$ 190 28 58		
C4/5-7 C4/10- C4/10- C4/15-	12A 12B	ĸ			3.4 ND 1 ND 1 ND 1	. 3100 34 82 ND		

dra as ma requestal.

PARAMETER (unite):	1/18/86 (ppm) 1/18/86	PCB's (ppm) 10/25-31/85	Total Petroleum Hydrocarbons (ppm) 10/25-31/85	
le No./ le Depth (ft)				***
/0-1 /1-2 /2-3	- 15		1990 - 1480 - 530	, w w w w w w w w w w w
2/0-1 1/1-2 1/2-3	- NO 10		- 1390 810 - 1130 - 610	
1/0-1 1/0-1 1/1-2 1/2-3	_ ND 10	- 42 - 23 (21)	_ 4410 _ 9630 (7290) _ 7440	
1/0-1 1/1-2 1/2-3 1/5-7	- ND 10		- 6040 - 10560 - 15100 - 1190 (900) - 940	
5/U-1 6/1-2 6/2-3	- 16		23800 1040 9180	
6/0-1 6/0-2 6/2-3	_ ND 10		.640 (650) 2440 5900	
7/0-1	- ND 10		4520	
H/U-1 H/1-2 B/2-3	- ND 15		3470 31200 173000	, ,
9/0-1 9/1-2 9/2-3 9/5-7	17	23 ND 1	10700 410 480 120	
10/0-1 10/2-3			580 230	

of

Table IV Summary of Volatile Organic Compound Concentrations in Soils October 25-31, 1985 Bayonne Barrel & Drum Company

Sample No. Sample Depth (Ct):)D 1 D-1		DND 2 0-1		080 0-1		DB1 O-) 8 -1		0 12 0-1		1 00A 1-0		nnn Leid	pje::	688 0 L)					,
PRIORITY POLICITANTS (ppb)										 										 			
Acrolata (ppm) Acryloustrile (ppm)		 					ND.	: 1 1											D 1 D 1		;		
Vint Chloride Chloroethane		NI	D 20		ND 2	0.	ND 2	0	ND	20	NI	20		ND 2	0	K	D 5	ND	20				
ticthylene Chloride 1,1-Dichloroethylene 1,1-Dichloroethene 1,2-Dichloroethylene																•					· · ·		
Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropane							11										•	-		-			
Trichloroethylene Bunzene 1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethylen	•	·				 1	ND 2 5 ND 2 ND 2	5 0		4				ND 2 2 ND 2 ND 2	9 0							- A	
Toluene Chlorobenzene Ethylbenzene 1,2 & 1,4-Dichlorobenzene		NI	D 20		ND 20		38 ND 2 860 ND 2	0	ND	20	•	20 52 20	٠,٠	21 ND 20 81 ND 20	Ó 0 ,	Ň	D 5	ND.	20				1 su
Total Priority Pollutants		188881 N 4888	D 20		11111 ND 20		901	5): 5):	ND ND	20	****	52 52 ======		104	9)	N	82:3:2 D	SSEE ND	2223 20	 1322	F:::::	15,851	
				,: :: :													n. 4. 2. 2 2		- 5 5 5	 a. 4, 4 4)		3 名 孝 孝 ()	F. 2: 2 2 3

Inter: ND a Not detected at or above minimum detection limit indicated, If no entry, analysis was not requested.

ND = Not detected at or above minimum detection limit indicated. If no entry, analysis was not requested.

Table IV (cont.) Summary of Volatile Organic Compound Concentrations in Soils October 25-31, 1985 Bayonne Barrel & Drum Company

Sumple No. Sumple Depth (ft):	und 1 0-1	900 2 0-1	BBU 4 0-1	0-1	000 1:2 0-1	0-1	NID 13 4 (field blank	0-1 0-1		
R PRIORITY POLIMEANTS (ppb)										
Hutanol Impropyloyolopropane Lenes Xylene	ND 20	ND 20	50 ND 20 28000 28000	ND 20	ND 20 ND 20 ND 20 38	ND 20 ND 20 ND 20 1500	ND 6	ND 20		
p-Xylane alopropine atone meth) Sulfide			ND 20		47 ND 20	1200 Nn 20				
opropanul Olon Disulfide Olo) Ethyl Ketone Con III			17.0				•			
r luliexanc 'Sano thy 1 Tuobuty 1 Ketone Nothy 1-2-Pentano)					4					
M12 Aliphatic Hydrocarbons H11 Aliphatic Hydrocarbons H16 Aliphatic Hydrocarbons H16 Aliphatic Hydrocarbons		1	ND 20 , 190 35 30		ND 20	ND 20 70 ND 20 ND 20				
			2600 430 3400 ND 20		75 31 ND 20	160 130 330 60				
7012 Aromatic Hydrocarbons 70114 701120 Tyrene	ND 20	ND 20	3300 ND 20 ND 20 ND 20	ND 20	ND 20	ND 20	ND 5	ND 20	-	
termination of the second seco	ND 20	ND 20	66035	ND 20	191	3440	PD 6	**************************************		*****
	28226663226533 /	********	******		*********		252222222	FEEEDSSOES:	2002222222	22222

Table IV (cont.) Summary of Volatile Organic Compound Concentrations in Soils October 25-31, 1985 Bayonne Barrel & Drum Company

Sumple No. Sample Depth (ft):		99D 15 5-7	BBD 15 15 (Field Bl	. 1) 16 -2	BBD 16 5-8 8-10	BBD 17 0-1	BBD 17 g 0-1 (Lub Dup)	BD 17 BI	D 19 BBD 0-1 Wat (Field	er
PHICHITY POLLUTANTS (ppt	o)							*****		***	
Acroluin (ppm) Acrylonitrile (ppm)						ND 1 ND 1	ND 1				
'inyl Chloride 'bloroothine		ND 20) ND 5	ND	20	ND 20	89 ND 20	170 1 ND 20	170 N	D 20 ND	5,
hethylene Chloride 1,1-Dichloroethylene 1,1-Dichloroethene 1,2-Dichloroethylene							130 ND 20 250 150	91 ND 20 210 120	740 28 1000	****	
hloroform ,2-blchloroethane ,1,1-Trichloroethane ,2-blchloropropane		****			.		41 36 510 ND 20	21 32 211 ND 20	100 78 850 52		
richluroethylene enzume ,l,2-Trichloroethane ,l,2,2-Tetrachloroethyl	ene	ND 20 60 ND 20	· C · C · C · C · C · C · C · C · C · C	ND	20 57 20 20	ND 20 30 ND 20	240 130 100 94	210 87 92 71	830 220 220 290		
oluene htorobenzene thylbunzene .2 4 1,4-Dichlorobenzene		ND 20 87 ND 20	ND 5	ND	930 20 830 20	ND 20	7500 30 2200 61	6400 I	4000 49 2700		
	9	147	ND 5	16	17)	30	11561		********	20 Mi 20 Mi	*********
			· · · · · · · · · · · · · · · · · · ·		T	********	********		:::::::::::	**********	# ####################################

ND = Not detected at or above minimum detection limit indicated. If no entry, analysis was not requested.

Table IV (cont.) Summary of Volatile Organic Compound Concentrations in Soils Outober 25-31, 1985 Bayunne Barrel & Drum Company

Sample Ho. Sample Depth (ft):		D 15	DBD if (Field) 16 -2	BBD 16 5-8 8-10	UDD 17 0-1	000 17 0-1 (Lab Dup)	BND 17 8	nno 19 0-1	NND 20 hater (Flaid Blank)	
dqq) ethatilloopyTynoluq ko)											
- intanol soprop leyelopropino > Lenes - X3 Lene	ħ	ID 20	N	NI Ni	20 20 20 20 400	ND 20 ND 20 ND 20 13	ND 20	ND 20	ND 20 ND 20 ND 20 3900	Nt 20	ND 5	
p-Xylene clupropane clupr chupr acthyl Sulfide				1: ND	200	23 ND 20	ND 20 130 ND 20	ND 20 130 ND 20	3400 36 70 30			
opropunol rhon Diwolfide thyl Ethyl Ketone won 113							ND 20 30 170 ND 20	ND 20 15 140 ND 20	50 50 110 20			
clohexane exane thyl Isobutyl Ketone Hethyl-2-Pentanol		-				f.	40 25 730 160	20 15 500 85	50 25 550 140			
III2 Aliphatic Hydrocarbonu IIII Aliphatic Hydrocarbona IIII Aliphatic Hydrocarbonu IIIII Aliphatic Hydrocarbona	HI	20			· ·	ND 20 70 ND 20 30	30 40 ND 20 ND 20	35 80 ND 20 ND 20	100 120 ND 20 ND 20	•		
MiO Aromatic Hydrocarbona Mi2 tromatic Hydrocarbona Mi2 Aromatic Hydrocarbona Mi2 Aromatic Hydrocarbona		300 910 580 550			20 40 20	ND 20	ND 20 40 60 190	ND 20 35 55 200	ND 20 60 80 300			
HIIZ Aromatic Hydrocarbona OHII OHIZO Yrene		20	ND	. (5 ND	20	ND 20	120 ND 20 ND 20 ND 20	90 ND 20 ND 20 280	150 ND 20 ND 20 HD 20 450	ND 20	ND 5	* * * * *
:=====================================	,5	22222 2340	HD.	5 2	===== 640 /	166	1765	1680	9685	ND 20	**************************************	

ND = Not detected at or above minimum detection limit indicated. If no entry, analysis was not requested.

Table IV (cont.) Summery of Volatile Organic Compound Concentrations in Soils November 27 - December 17, 1985 Sayonne Barrel & Drum Company

Sample Ho. Sample Depth (ft):			: .	88D O	C1 -2	•	SD C 5-7		380	C2 -7		BID S (La)		10-1 80 C		-	D C3 5-7		980 13	C3 -17		20·	C3 -22	 98D 3-	C4 7		15	C4 -17
PRIORITY POLLUTANTS (p	pb)													 										 				
Acrolein (ppm) Acrylonitrile (ppm)			*					· _ "	; ~ 				1											.		4001		
Yinyl Chloride Chloroethene	\			M	D 20			D 20) MD	20	, ,	ND	20	 ND 2	0	ij	D 20		ND	20		ND	20	 ND	20	 -1	MD	20
Methylene Chloride 1,1-Dichloroethylene 1,1-Dichloroethene 1,2-Dichloroethylene						-		-		٠.			İ								J.							
Chiorofore 1, 2-Dichloroethene 1, 1, 1-Trichloroethene 1, 2-Dichloropropene												•	47 1											•				
Trichiproethylene Benzene 1, 1, 2-Trichiproethene 1, 1, 2, 2-Tetrachiproeth	ylen	•					ND 2 41 ND 2	0	MD MD			ND ND ND	51 20			, M	D 20 265 D 20 D 20	,			,				90 20		ND ND ND	26 20
Toluene Chlorobenzene Ethylbenzene 1,2 & 1,4-Dichlorobenz				ND	20	•	ID 2 230 ID 2	0	ON ON ON			ND ND ND	20	ND 2	0		1700 330 3700 320		NÒ	20		ND	20	· 6	00 50 90	٠.	ND	10
Total Priority Poliuta	nt=			MD	20	. (27)	.		121		1	25.	 ND 2	D		6313) · · ·	MD	20		ND	20	 , Ž 38	17)			54

Notes: ND - Not detected at ar above minimum detection limit indicated.

Table IV (cont.) Summary of Volatile Organic Compound Concentrations (ppb) in Soils November 27 - December 17, 1985 Bayonne Barrel & Drum Company

	•	Bayonne	Barrel & L	htum combes	+/ 				nnp C1	www c.t
inmple No.	BBD C1 0-2	BHD C1 5-7	BBD C2 5-7	BBD C2 5-7 (Lab Dup	BBD C2 10-12	DNI) C3 5-7	BBD C3 15-17	unn C3 20-22	\$-7	15-17
I PRIORITY POLLUTANTS (ppb)							ND 20	ND 20	ND 20	ND 20
intend thropy leyelopropane	ND 80	ND 20 ND 20 BOO ND 20	ND 20 ND 20 130 ND 20	ND 20 ND 20 140 ND 20	ND 20	ND 20 ND 20 9600 ND 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		70 4300 ND 20	
tylene p-\ylene p-\ylene p-\ylene p-\ylene p-\propone p-\propone						1		***		×
nethyl Sulfide opropinol than Dissifide thyl Fthyl Retone				ND 20 20 ND 20	ND 20 36 ND 20				ND 20 40 ND 20 90 20	
on 113 clobesand canc thy I Isolaty I Ketone Nothy I-2-Pentanol			ND 20 120 ND 20	ND 20 120 ND 20	4				50 ND 20	*****
HIZ Aliphatic Hydrocarbons HII Aliphatic Hydrocarbons HIG Aliphatic Hydrocarbons HIG Aliphatic Hydrocarbons		ND 20	, 1	1	, , , , , , , , , , , , , , , , , , ,	ND 20 200 ND 20 ND 20			ND 20 150 30 ND 20	
HIIO Aromatic Hydrocarbons HII2 Aromatic Hydrocarbons HII2 Aromatic Hydrocarbons HII2 Aromatic Hydrocarbons		1100 ND 20 ND 20 ND 20				330 2000 ND 20 ND 20			80 800 ND 20	
9812 Aromatic Hydrocarbons 10814 10819 10820	ND 20	260 ND 20		ND 20	ND 20	ND 20 100 100 ND 20 ND 20	ND 20	ND 20	ND 20 180 ND 20	ND 20
tyrene resessessessessessessessessesses otal Non Priority Pollutants	ND 20	********	********	280	36	12230	22222222 ND 20 22222222	======================================	5700 888888888	ND 20

ND = Not detected at or above minimum detection limit indicated.

If no entry, analysis was not requested.

oles:

Summery of Metals, Phonol, Cyanide & Pesticides Concentrations in Soils Jenuary 18, 1985 and October 25-31, 1985 Bayonne Barrel & Drum Company

L) i	BBD10 (notes)	88D 4 0-1	88D 8 0-1	880 11 0-1	BBD 14 0-1	BBD 15 0-1	88D 16 5-8 8-10	BBD 17 0-1
	0.002 ND 1.0	13 17 0.64	- 390 22	51 10	6. 4 6. 4 0. 28	- 55 10	4. 0 2, 9 0, 32	6. 0 - 56 0. 5
	0,21 ND 0.02	1300 - 3400 -15500 - 8400	- 34 - 1900 - 8400	- 4.72 43.2 - 380	0.52 27 15.6 92	- 5.08 52.0 - 6400	0. 2 7. 0 4. 64	- 6.36 - 2300 128 - 370
	0.0004 ND 0.02 0.001	- 2, 2 62, 4 0, 92 0, 03	713.6 3.1 0.046	-1.3 0.48 0.004	- 1.6 25 0.3 0.019	- 4.1 0.84 0.042	0.62 5.28 0.2 ND 0.004	7 1.6 (2.3) 36.6 1.7 0.023
		ND 0, 4 - 4520		!	ND 0.4 71.2		ND 0.4 13.4	ND 0.4
		15 2			ND O.5 ND O.1		2.6 ND 0.1	20 0. 5
	,							*******
	HD 1.0 HD 1.0 HD 1.0 HD 1.0 HD 1.0							******
		O. 002 ND 1. 0 0, 21 ND 0. 02 2. 6 0. 0004 ND 0. 02 0. 001	ND 1.0 ND 1.0 ND 0.4 -4520 ND 1.0 ND 0.4 -4520 ND 1.0 13 0.002 17 - 390 ND 1.0 22 0.64 0.21 1300 - 34 ND 0.02 - 3400 - 1900 -13500 2.6 - 8400 - 8400 0.0004 - 2.2 - 13.6 62.4 ND 0.02 0.92 3.1 0.001 0.03 0.046 ND 0.4 - 4520 ND 1.0	13 0,002 17 0,64 0,21 1300 0,64 0,21 1300 -34 -4.72 ND 0.02 -3400 -1900 43.2 -15500 2.6 -8400 -8400 -360 0,0004 -2.2 -13.6 -1.3 62.4 ND 0.02 0.92 3.1 0.48 0.001 0.03 0.046 0.004 ND 0.4 -4520 ND 1.0	13	13	13	

Hotes: Sample BBD 10, collected January 18, 1985, from furnace residue pile, is a composite sample enelyzed for EP Toxicity.

HD - Not detected at or above minimum detection limit indicated. If no entry, analysis was not requested.

Table VI
Summary of Base/Neutral - Pesticide Extractable
Acid Extractable Compounds Concentrations in Soils
October 25-31, 1985

Sample Ro. Sample Repth (ft):	00 4 0 - 1	BDD 14 0-1	BDD 16 5-8 8-10	6nd 17 0-1	0-1	000 13 0-1	0-1
ASE/REUTRAL - PESTICIDES (ppm)							
nenzyl Butyl Phthalate n-n-Butylphthalate L-Bethyl Naphthalene Anthracene	ND 2.60		ND 4.80	19.3 17.0 15.5 ND 0.5	หก 0.5 หก 0.5 0.68 ห ก 0.5	ND 0.5 ND 0.5 1.5 0.65	ND 0.5 ND 0.5 ND 0.5 1.0
lenzo(b)fluorenthene Menzo(a)pyrene New (2-Ethylhexyl)phthelete Brywene	,	410		•	ND 0.5 ND 0.5 7.26 ND 0.5	0.91 1.3 6.3 2.3	1.9 2.3 2.6 2.9
C.6-Dinitrotoluene luoranthene luorand hubithalune		420	À • 4 • • • A • • • • •		ND 0.5	1,9 2.5 0.63 1.7	ND 0.5 5.2 ND 0.5 ND 0.5
Thenunt livene () rene 1 , 2 - Di pheny Lhydrazene lenzo (ii) anthravene			4		ND 0.5	2.8 4.0 0.52 ND 0.5	4.7 5.8 ND 0.6 2.9
tonzo(ghi)perylene intenoti,2,3-ed)p;rene				ND 0.5	ND 0.5	NO 0.5 ND 0.5	0.87 0.87
intel Base/Neutral & Peatleides	ND 2.60	(830)	ND 4.80	(51.8)	9.13	(27.01)	(31.24)
Fotal ACID EXTRACTABLES (ppm) ND	0.640(1)		ND 9.50(1) ND 0.5	ND 0.5	ND 0.5	ND 0.5

intes:

ND = not detected at or above minimum detection limit indicated.

If no entry, analysis was not requested.

Table VII Summary of Polychlorinated Biphenyls, Total Petroleum Hydrocarbons A Volatile Organic Compound Concentrations in Surface Sediment & Surface Water Samples October 25-31, 1985 Bayonne Barrel & Drum Company

	Seillme	nto		Valer	• :
Sample No. :	nnd 81 nad 82	nnn sa	DND S4	nub Ki	
PARAMETER	Concentrations	(ppm)		*********	
i.c.n.,*	150 - 60)		11. <i>y</i>	ND I	
Total Petroleum Hydrocarbons	23700	850 _. /	3940n <i>)</i>	670	
PARAMETER	Concentrations	(ppl/)			
Vulntile Organic Compounds		****			
Priority Pollutants	ND 20			ND 5	
Taluene	ND 20	· · · · · · · · · · · · · · · · · · ·	3.9		
Non Priority Pollutants	ND 20				
Acetone 4-Hethyl-2-Pentanol			25 20	-	
Notes: ND = Not detected at o	r above minimum detection li	mit indicated		********	

If no entry, analysis was not requested.

Tuble VIII

Summary of Polychlorinated Hiphenyla , Total Petroleum Hydrogarhona, Metala, Acid Extractables, Base Neutrals, Phenol & Cyanide Concentrations in Ground Water January 7,1986

Bayonne Barrel & Drum Company

mple See:		BBD C1	MBD C2	DBD C3	BBD C4	BBD C5	unn ce
FAMILIE (unitu)	****				*********	, , , , , , , , , , , , , , , , , , ,	
n's (pph)		ND 1	ND 1	NO 1	ND 10 (1)	53 80 (2)	ND 1
nl Petroleum / Irocartions (ppm)	/	2.0	(3.7)	(4.8)		(2009)	(1.0)
METAL CONSTITUENTS		Con	centrations (ppm)	*****	;	
imony enic 3 ilium mium					ND 0.5 0.01 ND 0.01 ND 0.01		4-
omittin per d di		***************************************	1		ND 0.01 0.04 ND 0.1 ND 0.002		
kel unium ver Ilium				•	ND 0.01 ND 0.007 0.03 ND 0.1	•	*********
* • • • • • • • • • • • • • • • • • • •					0.03		
::::::::::::::::::::::::::::::::::::::	********	######################################				18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*******
/Neutrals (ppb)	*****) ((((() () () () () () () () () () () () () ()	
V-liut) i phthalate hthalene					28 14		
(Extractables (ppb)					ND 25		
nol (ppm) vida (ppm) ***********************************				60 est 60 est eg en las en en en en en	ND 0.03 ND 0.004		

(2) Concentration (ppm) in mediments filtered out of water sample. ND a Mot detected at or above minimum detection limit indica

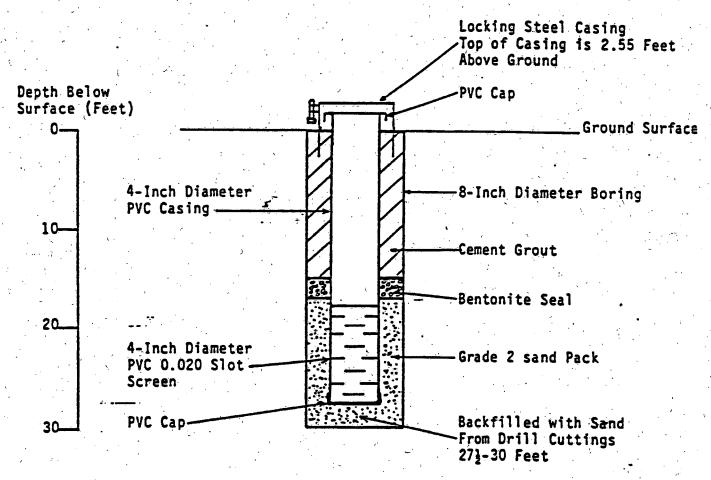
ntry, analysis was not requested.

Table 1X
Summary of Volatile Organic Compound Concentrations in Ground Water
January 7, 1986
Bayonne Barrel & Drum Company

ample No.;	BBD C1	NBD C2	BDD C3	BDD C4	BBD C5	nno ce
DARTI TÜKRTS	Concen	trations (pp	b)	7		
HIGHTY POLLUTANTS (ppb)						
hloroform , l , l - Frich Forosthane i omodech loromethane -dzone	ND 5	ND 5 5 (ND 5) ND 5	25 ND 5 5 ND 5	ND 5 ND 5	ND 5	ND 5
oluçus Harolonzene Harolonzene Harolone (harolonzene)	ND 5	ND 5	ND 5	5 ND 5 ND 5 ND 5	150 67 1060 76	NI) 5
and frierity Poliutants	ND 5	5	30	33	1353	'NI) 5
c. ERIORITY POLLUTANTS (ppb)						
oloroflaoranethine o blocoflaoronethone o - sopropylether oethylather	10 70 15 ND 5	ND 5 ND 5 ND 5	ND 5	ND 5 ND 5 ND 5	ND B	ND 5
, I, I-Trimethylpentene ling Isomera clonesnue -thyleyelopentane		10 (10) ND 5			ND 5 2000 60 30	
schillent and Sprops Thenzene Props Thenzene ths 1 Totuene Tuomera				ND 5	100 90 150 550	
lmethylbenzone Isomera 9810 laumers	ND 5	ND 5	ND 5	ND 5 ND 5	1400 240	ND 5
stal hon Priority Pollutants	**************************************	20 (30)	essessesses ND 5		======================================	====== ND 5

stem: ND = Not detected at or above minimum detection limit indicated. Luberatory duplicates in parenthenes. If no entry, analysis was not requested.

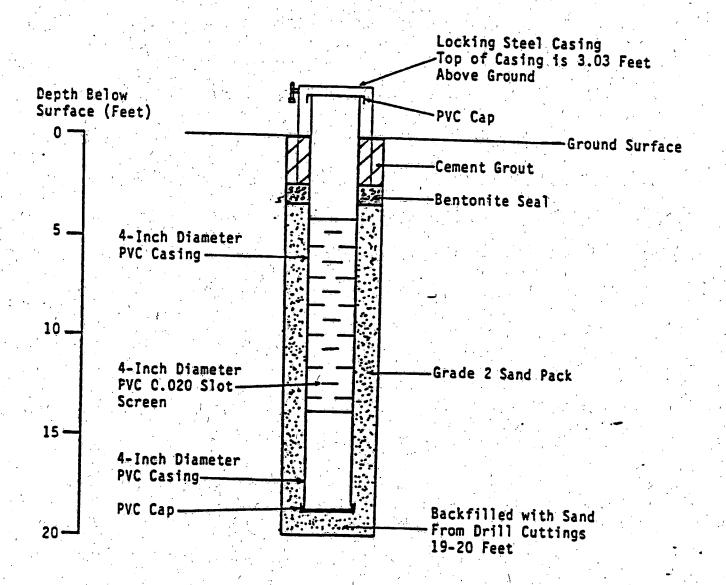
Appendices


Appendix A

Well Construction Diagrams

		Job No. <u>84C182</u>
PROJECT Bayonne Barrel and Drum Company SUB.	JECT Monitoring	Wells
COMPUTATION Construction Details-BBDC1		
COMPUTED BY DATE 12/26/85 CHE	ren ev	DATE

Page ______of__



Total Depth Drilled 30 Feet Total Depth Cased 27½ Feet

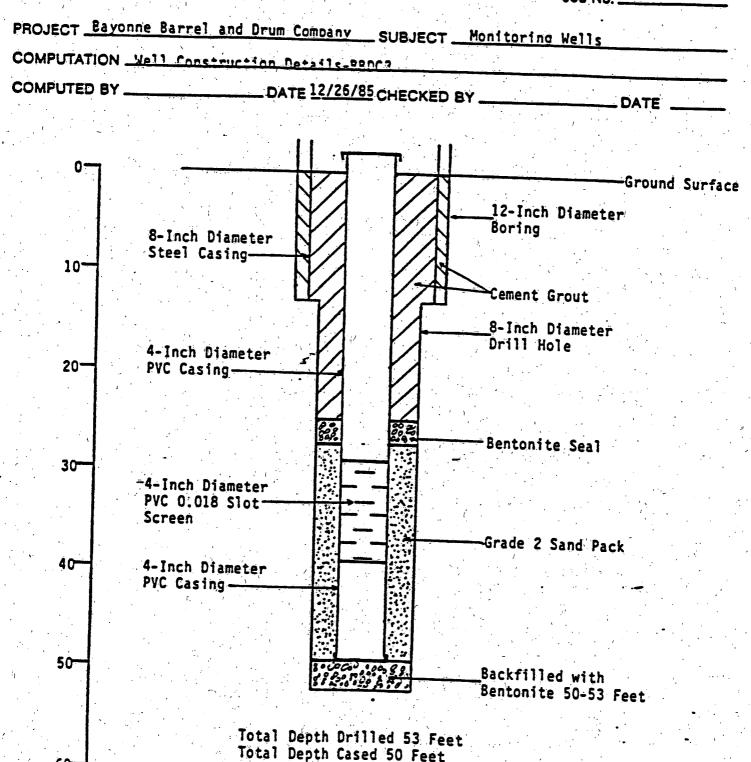
Page	of	3
Job No.	840182	

PROJECT Rayon	ne Barrel and	Drum Company	_ SUBJECT	Monitoria	n Malle		
COMPUTATION _		Details-BBDC2					
COMPUTED BY_		DATE 12/26/	CHECKED	BY		DATE	-

Total Depth Drilled 20 Feet Total Depth Cased 19 Feet wiv Associates, Inc.

Page 3 of 5

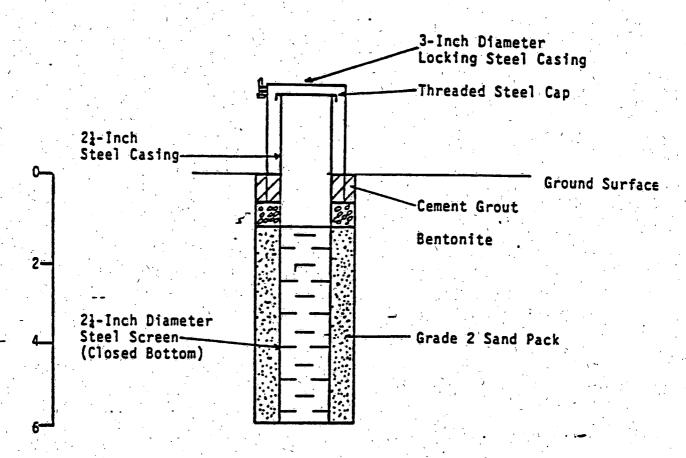
Job No. 84C182


ne Barrel and Drum Company SUBJECT Monitoring Wells Construction Details_280C4 DATE 12/26/85 CHECKED BY _ _DATE . Locking Steel Casing Top of Casing is 2.15 Feet Above Ground -PYC Cap Ground Surface Cement Grout -Inch Diameter rVC Casing--Bentonite Seal -Grade 2 Sand Pack 4-Inch Diameter PVC 0.020 Slot-Screen: Backfilled with Sand YC Cap. -From Orill Cuttings 28-29 Feet

Total Depth Orilled 30 Feet Total Septh Cased 28 Feet

Page 4 of 5

Job No. 84C182



		٠,
Job No. 2	40182	
		. /
	, ·	
 U-11-		. • •

PROJECT Rayonne Rarrel and Drum Company SUBJECT Wonitoring Wells

COMPUTATION Well Construction Details-BBDC5

COMPUTED BY ______ DATE 12/26/85 CHECKED BY ______ DATE _____

Total Depth Drilled 6 Feet Total Depth Cased 6 Feet

Appendix B

Well Logs

Appendix B

Well Logs

DETAILED DRILL LOS PROJECT/JOS NUMBER SCOPPS DRILLING COMPANY The Grant Politic to NAME of DRILLIA BOALL MANUFACTURER AND MODEL DEPTH TO GROUNDWATER NUMBER SIZE AND TYPE OF SIT (8) OF HOLE 20' RECOVER TO DE TALL DEPTH TO TO GROUNDWATER NOTAL DEPTH TO TO GROUNDWATER TO TALL DEPTH T			GEOC Z		
DRILLING COMPANY The forms of Delle Company NAME OF DRILLTR DRILL MANUFACTURER AND MODEL DEPTH TO GROUNDWATER RUMBER SIZE AND TYPE OF BIT (8) OF MOLE 20' RECOVER TOTAL DEPTH TOTAL CO RECOVER TOTAL DEPTH TOTAL CO RECOVER TOTAL DEPTH TOTAL CO RECOVER THE SECOND TOTAL CO	PROJECTIJOS HUMBER		SHEET 2 41 U		
NAME OF DAILLER AND MODEL DEPTH TO GROUNDWATER HUMBER BIZE AND TYPE OF BIT (8) FOR DAIL MANUFACTURER AND MODEL DEPTH TO GROUNDWATER HUMBER SIZE AND TYPE OF BIT (8) FOR DAIL STATE OF HOLE 20 TOTAL DEPTH TOTAL CORRECTORS TOTAL DEPHH TOTAL CORRECTORS TOTAL DEPTH TOTAL COR		LOC	ATION No 4 12-		
BUTTER AND TYPE OF BIT (8) SIZE AND TYPE OF BIT (8) OF HOLE 20' RECOVER TOTAL DEPTH TOTAL CO RECOVER	87:	ELE	Merch 135		
SIZE AND TYPE OF BIT (8) 10 10 10 10 10 10 10 10 10 10 10 10 10 1	10ATE	CRI	ENTATION VecTel		
The series of th		DAT	E STARTED DATE COMPLETE /2/2/2		
SS C D S SS 1 Size Flustion forme Flustion 22 First White Growth 4P Day Rei-cultum Shall Fill - All Scriebur The - All	Saure Eleve.)	CLASSOCATION OF GATSHALS		
Fluster Recide Fluster Recide Figure 224 Flust Little Gleicht 117 Die Letter Litter Frit - Letter Litter Sepal 4-14 Section TD = 22		ر در	0-5'		
Fluster Recide Fluster Recide Figure 224 Flust Lifter Geometer at Differ Recide Frie - Action Comm. Sand		أيرن			
Fluster Recide Fluster Recide Figure 224 Flust Little Gleicht 117 Die Letter Litter Frit - Letter Litter Sepal 4-14 Section TD = 22		17.			
Flusifier Resident Flusifier Berick Film 201 Flusif WATER Greater UP Dance Resident Frien-Alexan Simple 4-14' Sentetuin To = 20'	_	% :			
Fluster Reported Fluster Best Flust White Granter up David Retingulation Finite-placeting with Separation The Retirement _		5-7'			
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'	-		MOUST, DARK BENDING GRANNLAND FILL		
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'		•			
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'			10-/2'		
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'			BENK RED-BLOW FIR		
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'			WITH SOME CONSTS		
Him 30% Found William, Direct Active Common, Free processor common Signalia 4-14 Serveturi Till = 22'					
HATER GROWNET UP DANK RED-LUCION SAND 4-14 Serreum TE = 22'			12-20'		
Proceeding in the Server of Tensor of the Te		·	bisch and - committee		
4-14 Senzelin To = 22'		ż	To mich with which is		
Sings 4-14' Secretur To = 22'					
77 = 20'			• •••		
77 = 20'					
77 = 20'					
77 = 20'			•		
77 = 20'	-				
	† †				

Analytical Data Report Package

New Jersey Department of Environmental Protection

Hazardous Site Mitigation Administration

CN-029

Trenton, N. J. 08625

Laboratory Date and Time Case Name Sample # Sample 0 Sample Location of Sample Collection 59411 BBD 17/1' **SOLLOB** Analytical

Field

Service

Lab Name CALIFORNIA ANALYTICAL LAB, INC.

Certification #

Supervisor/Manager Signature ///

Name Michael J. Miille, Ph. D

QUALITY CONTROL SUMMARY

Case No. 23217

Mean Accuracy, Surrogate Measurements:	987.	f of Data Points 2
Hear Acturacy, Surregate		
Accuracy, Fortified/Spike Field Blank:	_	Sample #
Rel. Diff. (2), Duplicate Analysis:		Sample #

Approved by: ______

Date MWK

Base Neutral & Pesticide Extractables

Soil Samples	Mi	lligrams/kilog	ram
Sample Identity:	BBD 13/1	BBD 15/1	BBD 12/1
Acenaphthene	ND 0.5	ND 0.5	ND 0.5
Acenaphthylene	ND 0.5	ND 0.5	ND 0.5
Anthracene	0.65	1.0	ND 0.5
Aldrin	ND 0.5	ND 0.5	ND 0.5
Benzo(a)anthracene	ND 0.5	2.9	ND 0.5
Benzo(b) fluoranthene	ND 0.91	1.9	ND 0.5
Benzo(k)fluoranthene	ND 0.5	ND 0.5	ND 0.5
Benzolalpyrene	1.3	2.3	ND 0.5
Benzolghi)perylene	ND 0.5	0.87	ND 0.5
Benzyl butyl phthalate }-BHC	ND 0.5	ND 0.5	ND 0.5
6-BHC	ND 0.5	ND 0.5	ND 0.5
Bist2-chloroethyllether	ND 0.5	ND 0.5	ND 0.5
Bis(2-chloroethoxy)methane	ND 0.5	ND 0.5	ND 0.5
Bis(2-ethylhexyl)phthalate	ND 0.5	ND 0.5	ND 0.5
Bis(2-chloroisopropyllether	6.3	2.8	7.25
4-Bromophenyl phenyl ether	ND 0.5	ND 0.5	ND 0.5
Chlordane	ND 0.5	ND 0.5	ND 0.5
2-Chloronaphthalene	- ND 0.5	ND 0.5	ND 0.5
4-Chlorophenyl phenyl ether	ND 0.5	ND 0.5	ND 0.5
Chrysene	ND 0.5 2.3	ND 0.5	ND 0.5
4,4'-DDD	ND 0.5	2.9 ND 0.5	ND 0.5
4,4'-DDE	ND 0.5	_ ND 0.5	ND 0.5
4,4'-DDT	ND 0.5	ND 0.5	ND 0.5
Dibenzo(a,h)anthracene	ND 0.5	ND 0.5	ND 0.5 ND 0.5
Di-n-butylphthalate	ND 0.5	ND 0.5	ND 0.5
1,3-Dichlorobenzene	ND 0.5	ND 0.5	ND 0.5
1,2-Dichlorobenzene	ND 0.5	ND 0.5	ND 0.5
1,4-Dichlorobenzene	ND 0.5	ND 0.5	ND 0.5
3,3°-Dichlorobenzidine Dieldrin	ND 0.5	ND 0.5	ND 0.5
Diethyl phthalata	ND 0.5	ND 0.5	ND 0.5
Dimethyl phthalata	ND 0.5	ND 0.5	ND 0.5
2,4-Dinitrotoluena	ND 0.5	ND 0.5	ND 0.5
2.6-Dinitrotoluene	'ND 0.5	ND 0.5	ND 0.5
Di-n-octylphthalate	1.9 ND 0.5	ND 0.5	ND 0.5
Endosulfan sulfate		ND 0.5	ND 0.5
Endrin aldehyde	ND 0.5	ND 0.5	ND 0.5
	ND 0.5	ND 0.5	ND 0.5

Date Extracted:

Date Analyzed:

ND=None detected, less than

Milligrams/kilogram

Sample Identity:	BBD 13/1	BBD 15/1	BBD 12/1
Fluoranthene	2.5	5.2	ND 0.5
Fiuorene	0.63	ND 0.5	ND 0.5
Heptachlor	ND 0.5	ND 0.5	ND 0.5
Heptachlor epoxide	ND 0.5	ND 0.5	ND 0.5
Hexachlorobenzene	ND 0.5	ND 0.5	ND 0.5
Hexachlorobutadiene	ND 0.5	ND 0.5	ND 0.5
Hexachloroethane	ND 0.5	ND 0.5	ND 0.5
Indeno(1,2,3-cd)pyrene	ND 0.5	0.87	ND 0.5
Isophorone	ND 0.5	ND 0.5	ND 0.5
Naphthalene	1.7	ND 0.5	1.2
Nitrobenzene	ND 0.5	ND 0.5	ND 0.5
N-Nitrosodi-n-propylamine	ND 0.5	ND 0.5	ND 0.5
PC8-1016	ND 0.5	ND 0.5	ND 0.5
PC8-1221	ND 0.5	ND 0.5	ND 0.5
PCB-1232	ND 0.5	ND 0.5	ND 0.5
PC8-1242	ND 0.5	ND 0.5	ND 0.5
PCB-1248	ND 0.5	ND 0.5	ND 0.5
PCB-1254	ND 0.5	ND 0.5	ND 0.5
PCB-1260	ND 0.5	ND 0.5	ND 0.5
Phenanthrene	2.8	4.7	ND 0.5
Pyrene	4.0	5.8	ND 0.5
Toxaphene	ND 0.5	ND 0.5	ND 0.5
1,2,4-Trichlorobenzene	ND 0.5	ND 0.5	ND 0.5
Benzidine	ND 0.5	ND 0.5	ND 0.5
a-BHC	ND 0.5	ND 0.5	ND 0.5
γ-BHC	ND 0.5	ND 0.5	ND 0.5
Endosulfan I	ND 0.5	ND 0.5	ND 0.5
Endosulfan li	ND 0.5	ND 0.5	ND 0.5
Endrin	ND 0.5	ND 0.5	ND 0.5
Hexachlorocyclopentadiene	ND 0.5	ND 0.5	ND 0.5
N-Nitrosodimethylamine	ND 0.5	ND 0.5	ND 0.5
N-Nitrosodiphenylamine	ND 0.5	ND 0.5	ND 0.5
1,2 Diphenyl Hydrazine 2 Methyl Naphthalene	0.52 1.5		0.68

ND=None detected, less than

Gollob Analytical Service Con Serviv Associates. Inc.

MOLININI/GOLLOB A DIVISION OF ENSECO INCORPORATED

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331 1 7 1885

RECEIVED

Dr. D. Raviv

Raviv Associates

5 Central Avenue

West Orange, NJ 07052

G.A.S. REPORT No.

60700

(Formerly 59797)

Date Requested:

Date Reported

11/1/85

4/15/86

P.O. No.

84C182

MATERIAL SUBMITTED.

30 (Thirty) Samples - Bayonne Barrel & Drum

NFORMATION REQUESTED: Gas Chromatography Analysis

NOTEBOOK REFERENCE:

LM 1183 page 13

RESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 11/1/85, have been analyzed for the remaining constituents requested completing the analytical requirements.

All data are presented in the attached tables.

page 1 of 4

t 41686

Sample Identity: BBD 4/1'

micrograms/kilograms

		20-22	•
ACID COMPOUNDS	-	BASE/NEUTRAL COMPOUNDS	
21A 2,4,6-Trichlorophenol	ND	41B 4-Bromophenyl phenyl ether	C4
224 - Chloro-marrerol	ND	42B Bis(2-chloroisopropyl)ether	
22A p-Chloro-m-cresol 24A 2-Chlorophenol	ND	43B Bis(2-chloroethoxy)methane	
	ND	52B Hexachlorobutadiene) (2)
31A 2,4-Dichlorophenol	ND	53B Hexachlorocyclopentadiene	\boldsymbol{z}
34A 2,4-Dimethylphenol	ND	54B Isophorone	NO.
57A 2-Nitrophenol	ND	55B Naphthalene	
58A 4-Nitrophenol	ND	56B Nitrobenzene	
59A 2,4-Dinitrophenol	ND	61B n-Nitrosodimethylamine	K.
60A 4,6-Dinitro-o-cresol	ND	62B n-Nitrosodiphenylaminea	
64A Pentachlorophenol	ND	63B n-Nitrosodi-n-propylamine	EX
65A Phenol		66B Bis(2-ethylhexyl)phthalate	
BASE/NEUTRAL COMPOUNDS		67B Butyl benzyl phthalate	CK
BASE/NEUTRAL COMPCONDE		68B Di-n-butyl phthalate	
	NĎ	69B Di-n-octyl phthalate	ND .
1B Acenaphthene	ND	70B Diethyl phthalate	M
5B Benzidine	- ND	71B Dimethyl phthalate	KD
8B 1,2,4-Trichlorobenzene	ND	72B Benzo(a)anthracene	ž
9B Hexachlorobenzene	ND	73B Benzo(a)pyrene),	
12B Hexachloroethane	ND	74B Benzo(b)fluoranthene)	
18B Bis(2-chloroethyl)ether	ND	75B Benzo(k)fluoranthene	+
20B 2-Chloronaphthalene	ND	76B Chrysene	ŧ
25B 1,2-Dichlorobenzene	UN D	77B Acenaphthylene	ND
26B 1,3-Dichlorobenzene	ND ND	78B Anthracene	KD
27B 1,4-Dichlorobenzene	ND UN	79B Benzo(ghi)perylene	ŧ
28B 3,3-Dichlorobenzidine	ND ND	80B Fluorene	ND
35B 2,4-Dinitrotoluene	ND	81B Phenanthrene	+
36B 2,6-Dinitrotoluene	ND	82B Dibenzo(a,h)anthracene	ND
37B 1,2-Diphenylhydrazine	עט.	83B Indeno(1,2,3-cd)pyrene	t
39B Fluoranthene	ND	84B Pyrene	
40B 4-Chlorophenyl phenyl ether	עע	,	

ND = None detected above the average reporting limit of 640 ppb Reported by: JE
for acids and 2,600 ppb for B/N.

Checked by: G-1

NA = Not analyzed due to method limitations.

EAnalyzed as diphenylamine.

^{*}Trace concentrations detected below the average reporting limit.

tCoelute.

December 23, 1985

Gollob Analytical Service 47 Industrial Road Berkeley Heights, New Jersey 07922

Attention: Lou Molinini

Re: Transfer of Soil Samples and Request for Analysis Bayonne Barrel and Drum Company Job No. 84C182

Gentlemen:

Please find attached a copy of the Chain of Custody form for the samples from the subject site. These samples were transferred to your laboratory by John A. Larkins, of Dan Raviv Associates, Inc. on December 3, 1985. The purpose of this letter is to confirm our instructions regarding the type of analysis to be performed. The analyses requested are indicated in the "Remarks" column opposite each of the samples listed on the attached form.

If you have any questions, please call.

Very truly yours,

DAN RAVIV ASSOCIATES, INC.

Michael M. Zucker Geologist

MMZ/sm Enc.

Sample Identity: BBD 14/1'

micrograms/kilograms

ACID COMPOU	<u>NDS</u>		. ,	•	BASE/NEUTRAL COMPOUNDS		•
21A 2,4,6-Trich	lorophenol	ND	4:	lB	4-Bromophenyl phenyl ether	N	(D
22A p-Chloro-m-		ND	4	28	Bis(2-chloroisopropyl)ether		Œ
24A 2-Chlorophe	ņol	ND .	4	3B	Bis(2-chloroethoxy)methane		ID '
31A 2,4-Dichlor	ophenol	ND	5	2B	Hexachlorobutadiene		ND.
34A 2,4-Dimethy		ND			Hexachlorocyclopentadiene		ND
57A 2-Nitrophen	01	ND	5.	4B	Isophorone		ND.
58A 4-Nitrophen	ol	ND			Naphthalene	,	
59A 2,4-Dinitro	phenol	ND	5	6B	Nitrobenzene	•	Œ
60A 4,6-Dinitro		ND			n-Nitrosodimethylamine		AA'
64A Pentachloro		ND			n-Nitrosodiphenylaminea		D.
65A Phenol	•	ND	6	3B	n-Nitrosodi-n-propylamine		ND CIV
		• • • • •	. 6	6B	Bis(2-ethylhexyl)phthalate		
BASE/NEUTRA	L COMPOUNDS .	• 4-	6	7B	Butyl benzyl phthalate		ND O
			6	8B	Di-n-butyl phthalate		ND .
1B Acenaphthen	:e	ND	6	9B	Di-n-octyl phthalate	-	ND .
5B Benzidine		. ND	7	OB	Diethyl phthalate .		ND O
8B 1,2,4-Trich	lorobenzene	ND	7	18	Dimethyl phthalate		ND
9B Hexachlorob	enzene	ND	7	2B.	Benzo(a)anthracene		ND CV
12B Hexachloroe	thane	ND	7	3B	Benzo(a)pyrene		ND
18B Bis(2-chlor	oethyl)ether	ND	7	4B	Benzo(b)fluoranthene		(D)
20B 2-Chloronap	hthalene	ND			Benzo(k)fluoranthene		CN
25B 1,2-Dichlor	obenzene	ND			Chrysene		D
26B 1,3-Dichlor	obenzene	ND			Acenaphthylene		ND C
27B 1,4-Dichlor	obenzene	ND			Anthracene		ND
28B 3,3-Dichlor	obenzidine	ND	7	9B	Benzo(ghi)perylene		ND OF
35B 2,4-Dinitro	toluene	ND:	8	OB	Fluorene		CV
36B 2,6-Dinitro		ND			Phenanthrene		ND CV
37B 1,2-Dipheny	lhydrazine	ND			Dibenzo(a,h)anthracene	_	ND .
39B Fluorenther		ND	. 8	38	Indeno(1,2,3-cd)pyrene		CY.
40B 4-Chlorophe	nyl phenyl ether	ND			Pyrene		ND

ND = None detected above the average reporting limit of 10,000 ppb for acids and 200,000 ppb for B/N.

ppb Reported by: 35 Checked by: 31

NA = Not analyzed due to method limitations.

Analyzed as diphenylamine.

Sample Identity: BBD 16/5-8'

micrograms/kilogram

ACID COMPOUNDS	• .	BASE/NEUTRAL COMPOUNDS	
21A 2,4,6-Trichlorophenol	ND		D
22A p-Chloro-m-cresol	ND	42B Bis(2-chloroisopropyl)ether N	
24A 2-Chlorophenol	ND		D
31A 2,4-Dichlorophenol	ND		Ü
34A 2,4-Dimethylphenol	ND	53B Hexachlorocyclopentadiene N	ָס
57A 2-Nitrophenol	· ND	740 COOPHICT CHO	SD.
58A 4-Nitrophenol	ND	55B Naphthalene	(C)
59A 2,4-Dinitrophenol	ND		CA
-60A 4,6-Dinitro-o-cresol	ND		NA .
64A Pentachlorophenol	ND		KD CH
65A Phenol	ND		C
		66B Bis(2-ethylhexyl)phthalate	KD)
BASE/NEUTRAL COMPOUNDS			ND.
	• •		EN CH
1B Acenaphthene	ND		ND :
5B Benzidine	ND		ND -
8B 1,2,4-Trichlorobenzene	ND	time demonstration and a ferritarian	כא
9B Hexachlorobenzene	ND	72B Benzo(a)anthracene	ND
12B Hexachloroethane	ND	73B Benzo(a)pyrene	KD)
18B Bis(2-chloroethyl)ether	ND	74B Benzo(b)fluoranthene	ND
20B 2-Chloronaphthalene	ND	75B Benzo(k)fluoranthene	CA
25B 1,2-Dichlorobenzene	ND	76B Chrysene	E C
26B 1,3-Dichlorobenzene	ND	77B Acenaphthylene	ND
27B 1,4-Dichlorobenzene	ND	78B Anthracene	ND
28B 3,3-Dichlorobenzidine	ND	, , b b b b t b t b t b t b t b t b t b	ND
35B 2,4-Dinitrotoluene	ND	80B Fluorene	ND
36B 2,6-Dinitrotoluene	ND	81B Phenanthrene	. 🖶
37B 1,2-Diphenylhydrazine	ND		KD
39B Fluoranthene	*		KD
40B 4-Chlorophenyl phenyl ether	ND	84B Pyrene	. #

ND = None detected above the average reporting limit of 4,800 ppb Reported by: HS for acids and 9,500 ppb for B/N. Checked by:

NA = Not analyzed due to method limitations.

aAnalyzed as diphenylamine.

^{*}Trace concentrations detected below the average reporting limit.

d Extractibles

: imple Type: Water

Micrograms/liter

	•	یک کیا	3/11 LE			1 1			,	· · ·		
Cample Identity:	BBDC 4											
<u>istituents</u>				W 177		, z						
Chloro-3-Yethylphenol	ND-25	3										
! hlorophenol	11											,
2,4-Dichlorophenol			İ	1.7	.				1			
-Dimethylphenol				. ,								
,u-Dinitrophenol							12.		. \ ,,	×	•	
Ethyl 4,6-Dinitropheno	1										<i>\$</i> - 2	. '
.litrophenol												
-Nitrophenol			, ,							\		
itachlorophenol	1.										,	
henol			ا اخت	1				Ì	·			
-Trichlorophenol			الخمى								1	
	"		•						.,	l .		
									. `			
•									•			
						-			,		i,	
							· .					
	1.								•			, ×
			1			,	,				`	
,	·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
									•		•	
												1.4
				1 : 1						· .		
		*										;
	•											
											-	
<u>-</u>									1		•	
		1			1						vi.	
3/10/04					-			بتمنحك		<u> </u>		

ate Extracted: 1/13/86

te Analymed: 1/24/86

ND=None Detected, less than

Base Neutral & Pesticide Extractables

Sample Type: Water (BBD)	Micrograms/liter
Sample Identity:	BBDC4
Acenaphthene	ND 10
Acenaphthylene	ND 10
Anthracene	ND 10
Aldrin	ND 10
Benzo(a)anthracene	ND 10
Benzo(b) fluoranthene	ND 10
Benzo(k)fluoranthene	ND 10
Benzo(a)pyrene	ND 10
Benzo(ghi)perylene	ND 40
Benzyl butyl phthalate	ND 10
<i>р-внС</i>	ND 10
6-BHC	ND-10
Bis(2-chloroethyl)ether	ND-10
Bis(2-chloroethoxy)methan	e ND-10
Bist2-ethylhexyl)phthalate	ND-10
Bis(2-chloroisopropyl)ether	ND-10
4-Bromophenyl phenyl ethe	er ND-10
Chlordane	ND-10
2-Chloronaphthalene	ND-10
4-Chlorophenyl phenyl ethi	er ND-10
Chrysene	ND-10
4,4.000 _	ND-10
4.4'-DDE	ND-10
4,4'-DDT	ND-10
Dibenzo(a,h)anthracane	ND-40
Di-n-butylphthalata	28
1,3-Dichlorobenzene	ND-10 ND-10
1,2-Dichlorobenzene	
1.4-Dichlorobenzene 3.3'-Dichlorobenzidine	ND-10 ND-25
Dieldrin	ND-10
Diethyl phthalata	ND-10
Dimethyl phthalate	ND-10
2,4-Dinitrotoluene	ND-10
2.6.Dinitrotoluene	ND-10
Di-n-octylphthalate	ND-10
Endosullan sulfate	ND-10
Endrin aldehyda	ND-10
Fireini giaciil	

Date Extracted: 1/13/86
Date Analyzed: 1/24/86

	an F					Inc.	PROJECT NAM	18			TEST HOLE NUMBER		
	W	est	Oran	ge,	N.J.		Bayenic Genet For				GERC 1		
	DET	AILE	D DR	ILL	LOG		PROJECT/JOB	NUMBER		3 H I	187 <u>2 of 4</u>		
	RILLIN عصر لخ	a co Giz	MPAN'	220	it:,	i.	8172			LOC	ATION	A 1 - 5-	
N	GEORGE STEWART LOGGED BY: CHECKED BY:			ELE	ELEVATION PLEASE 12.T								
D 10	HILL M JMBER	ANUF	ACTUI	NER A	ND M	ODEL	Sumi Sitie	HOWATER	DATE	CRI	MATION 1/c.Z	=1	
	ZE ÀN					ر محرصه	TOTAL DEPTH	TOTAL CO RECOVERY	RE	DAT	ATARTED	DATE COMPLETE	
2 to	Smaller Laurence	1941	\\\\\.	10.	1		Mantes Dest Time , Ways 5000 .	Tipopharing das I	Bayes Stan,	ing.	CLASSWICAT		
	35	Ç	05.		Vijeralije.					200	0-5'	V	
	1				·			• • • • • • • • • • • • • • • • • • • •		27.		رمزيرون دعندر.	
L2.	35	1/3	15%			, ·				7			
		"." / .			,		لانهما الكالان	AR RUE		11.	5-71		
1/0	ડંડ	1	SE.			, <u>(</u>	A				וקנים - דב ייבות		
											GILAR-LA	20 Fu	
خرا		,,			4			***			10-12"		
						, '- , '						-Bion Fine Colonia Sant	
-2:											بسرن کے میں ال	T 6:2:25	
-							Flusico Roci	K.S.			12-20		
-							Her Ist. For	· s ! !			biles as	مريد المراجية	
-		` \					Day Brief	وان سرع دورو	-		7 - FEP . 25	الاستك لدستين و	
-				1	المشتزد	- 1	Frie-Jelesin	, , , , , , , , , , , , , , , , , , ,		* I	ar .		
							S.A-25		-				
		11.		٠, ا									
							1				v - 1	•	
				. : [- 4				
				,		,	4-14'Seriet TI = 22'	-12.					
, ,						-	To cas:(= 2		_			•	
. }				1									
		- 1	. ' }:						.]	Λ.			
									1				
- 4													
•		1								. !			

Da				socio	-	Inc.	PROJECT HAM Brysnae Bo	₹ 1+7		TEST HOLE NUMBER 83×3			
; ;				ge, i			PROJECT/JOB SICITIZ	MUMBER		SHE	ET <u>J</u> e1		
DAIL	LING	COM	PANY	1.20	<u>ر'ن</u>		SITE	·		roc	ATION		
MAM	اه ۱۶	DAIL	ER	Period Lev	Ð,		LOGGED BY:	CHECKED	BY:	ELE	YATION		
MUM	L WA	NUFA	CTUR	ER A	(D M	DEL	DEPTH-TO GROU	JNDWATER.	DATE	ORII	ENTATION VICTORY		
4" Rita							OF HOLE ST	TOTAL CO RECOVERY	RE		12/12/35 DATE COMPLE 12/12/35 12/17/93		
1	Barbag Saaraa	(7:1	7.	12	H		States Seel Time , Water Lone .	Boyramas en l	Part Par	tog	CLASSIFICATION OF MATERIALS		
	52					17					0-2.5		
_ +	22	.:									River Skore grand h		
\sim	l					٠.	When level	10	-		25-51		
1	<i>3</i> \$						dust 3'3"				Such Silvery of my gir		
		,			,		sifice lin	bonne)			5-7'		
	22				N 4		at this						
4				<u> </u>			make ciel - f	problég	•		angula sorty type soil given fill		
لئ					-ب		Luc to in	n:53 -		'	10-12'		
	~			.			15 very Le	Se. ergi			Mazo, red-bizin		
1			ļ		١	٠,٠	oppose to co	* 7'			Andrew Fizzon Well		
2-							المام المام		-		Andrew gizing, well Stifed Sind		
4	,				-			• · ·	-				
		: ;											
		,						, *, *			•		
4				`						: -			
30-									F =				
4									-				
7							This lies	ري المالي					
4	:				•		12: - 1 Si	aid?					
إع						1			} -				
						[V					
						 		t-					
15	,				.	Ì							
4				<u> </u> :					k / -				
ارح	,	١.		1									
*			1										
1		2.7			•			. ':		- N			
	,								-				
1		Ī	1, 17	Ļ	T,	!			•	•	· · · · · · · · · · · · · · · · · · ·		

January 7, 1986

Gollob Analytical Service
47 Industrial Road
Berkeley Heights, New Jersey 07922

Attention: Lou Molinini

Re: Request for Analysis of Samples
Bayonne Barrel & Drum
Job No. 84C182

Gentlemen:

Please find attached a copy of the Chain of Custody form for the samples from the subject site. These samples were transferred to your laboratory by Thomas Voss, geologist, of Dan Raviv Associates, Inc. (DRAI) on January 7, 1986. The purpose of this letter is to confirm our instructions regarding the type of analysis to be performed. The analyses requested are indicated in the "Remarks" column opposite each of the samples listed on the attached form.

If you have any questions, please call.

Very truly yours,

DAN RAVIV ASSOCIATES, INC.

Roberta N. Hoy Geohydrologist

RNH/sl Enc.

	PROJECT NO.	84.11	22		PRO	JECT NAME	3	suonne I	Barrel + Es:
• ,	LOCATION	Bayon	M	2 , N	I LAB	ORATORY	· 	gollob	
						•		•	
	SAMPLE NO.	TYPE (WATER/SO:	IL)	DATE	TIME	TOTAL #		Samplers Signature	REMARKS
•.	BEDC 1	water		1/7/86	1255	4		M/h	VOA'S TPHC & RE
	PRIX 2	water		1/7/8	1350	4		HAKEL-	VOASTPHC & PC
	BBD63	water		1/7/86	1410	4		Stoken_	VOR'S, TPK & P.
K	BBDC 4	unter		1/7/86	1320	8		Helly -	129 Pronta Fell-
•	BBDC5	water	,	1/7/86	1440	4		HH19	VOA'S THIC & PC
. `	BBDC 6	water		1/7/86	1250	4		Valor -	VOA'S TPHY & P.L
				<u>. </u>					-
		· · · · · · · · · · · · · · · · · · ·		٠	•				
	` .						· · · · · · · · · · · · · · · · · · ·		
		ė							
						•	·		
Ţ	Relinquished	i By:	,	e/Time: /86-16		ived By: /633	Con	ments/Condit	ion:
	Relinquished	l By:	Dat	e/Time:	Rece	ived By:	<u>.</u>	ments/Condit	ion:
·				 		/	† -		*
	Method of Si	nipment:	Snı	pped By:	Kece	ived By:		ments/Condit	10n;
	Receive	ed for Labo	rato	ry: <u>E</u>	ohn?	emul	-	uthorization or Disposal:_	
		tory Job No		•			_ T	ype of Dispos	al:
	Date/T	ime:	07	-86	17	20	_ D	ate of Dispos	al:
: ,	V)			- Ne	In	Man	ti	i santi	ainers
	T FILL	44 30	e Y	njore		Jane 1	بر رم	Lan	dding
,	012 17	neral	Ü	war	4514	ے مار سے اور	UL		

PROJECT NO.	846132		PRO	JECT NAME/	Bayon Born	(+ Du C
LOCATION	Penleit, NJ			1 ,		ere Binecuilles.
SAMPLE NO.	TYPE (WATER/SOIL)	DATE	TIME	TOTAL # 01 CONTAINERS		REMARKS
BRDCJ0-21	Siil	11/27/35	1346	Q	21 Zerl	TPHC, VA. PG
BBDC1/5-71	Sc,1	11/27/85	1402	2	143ml	Ven.
BBD 1/10-12	Sil	11/27/3	1421	1	143ml	TPHC, PCB
BBAC 1/15-17	5:1	11/27/55	1459	2	Miguel	HOLD
B376 1/20-22	S:/	12/2/8	08:4	1	1:13min	HOLD
Ban-2/5-7'	Sul	12/3/25	1250	2	213mi	TPHC, VOA. PCB
BBOC2/10-12.	Se:/	12/3/85	1322-	2	H Such_	TPHC. VOA, PCB
					•	
				- 1		
Relinquished	By: Dat	e/Time:	Rece	ived By: C	comments/Condit:	ion:
H. Zenk	— /2/	3/85 170	c John	9 Jackin	C-Cl 4 g. d	" on ice
Relinquished	By: Dat	e/Time:	Rece:	ived By: C	Comments/Condit:	
John a. y	Enkin 12	/3/85 is	2:45 T.	ance		· · · · · · · · · · · · · · · · · · ·
Method of Sh	ipment: Shi	pped By:	Rece	ived By: C	Comments/Condit:	ion:
					<u></u>	
					Authorization	,
Receive	d for Laborate	ry:			for Disposal:	
Laborat	ory Job No:				Type of Disposa	1:
Date/Ti	De:	*			Date of Dispose	11:

PROJECT NO.	876102-	, ,	PRO.	JECT NAME	1.1.12 Ba	== (
LOCATION	Gentle 1.	<i>J</i> , 6	LAB	PRATORY 6	elet to	Liters'	
SAMPLE NO.	TYPE (WATER/SOIL)	DATE	TIME	TOTAL # OF CONTAINERS	SAMPLERS SIGNATURE	REMARKS	
65-25 S/25-45	. jez(12/4/15	- 15/3	į	113.1	Hero	
66713/5-7	بدا	12/5/20	547E	2	M. 31_	TPHC, PEG, VER	
GBD63/10-12	1,-1	12/5/45	2715	2	12.30.12	Kois	
56004/0-7		12/5/55	1524	75	7. J. L	-Kotō	
	-						
•	_						
		•					
		, , , , , , , , , , , , , , , , , , , ,					
		4	•			•	
Relinquished	_ ,	te/Time:		ived By: Co	mments/Condit	•	
Relinquished	d By: Da	te/Time:		ived By: Co	omments/Condit	<i>;</i>	
Method of &	· · · · · ·	116/85 17	Rece		Comments/Condition:		
Receiv	ed for Laborat	ory:	^	ن کرر د د	/ Authorization for Disposal:-		
	cory Job No: —				Type of Dispos	al:	
Date/T	ine: 12/16/	r i	731	<u> </u>	Date of Dispos	;al:	

PROJECT NO	84618	<u></u>		PRO.	JECT NAME Z	you & Bri	
LOCATION	ilie-rak		11-1	LAB	ORATORY G	Och for	Extres?
SAMPLE NO.	TYPE (WATER/S	OIL)	DATE	TIME	TOTAL # OF CONTAINERS	SAMPLERS	
675-24/5-7						SIGNATURE	REMARKS
3324/10-12			1 7	1753	3	H.S	TPHE, PEF, VEF
		 -		2907	2	421	(1) TPHC, PCS
Sist 4/15-17	201		12/5/35	27.18	2	143.1	TPHL, FEB 1-28
	./			,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			•				
				•			
		- , <u> </u>					
				<u>;</u>			
<u> </u>	· .						
Relinquished			e/Time:		ved By: Con	ments/Conditi	ion:
Relinquished	By:	Dat	e/Time:	Recei		ments/Conditi	
Rolett	fan		16/85 113		The state of the s	ood, onice	
acling = ished	7	li .	7456 Eyr. 16/85 13		ved By: Con	ments/Conditi	ion:
a. X Russe		1,0	-705 775	7 A V	marco 3	vod a vie	
Received	l for Labo	rato	ry:	L'alla	er A	thorization or Disposal:	
Laborato	ry Job No	· •				pe of Disposa	
	ne: /2/		C 17	35			
		· .				te of Disposa	
14 BICL 4/13	-12' two	10	r iens,	Rus Tin	· ~ PCB F	e epeh JHL.	Co est

PROJECT NO.	840182					22/9- Dec.
LOCATION/	L'ack	,	lab	ORATORY Cica	the fiel.	tient
		· .				
SAMPLE NO.	TYPE (WATER/SOIL)	DATE	TIME	TOTAL # OF CONTAINERS	SAMPLERS SIGNATURE	REMARKS
BBDC3/15-17	5-1	12/13/95	בינים	2-	113-1	TRAC FCS, VOC
BK2 3/20-27	Smil	12/13/85	1134	?-	Mind.	TRICE FOR MY
£25C3/25-27'	5-1	12/13/85	13.16	2-	93.2	Herr
66163/30-321	5.1	12/13/55	135 6	2-	2. Fre-1-	Hero
F.E. C3/35-37	South	12/13/55	1421	3-	Mila-d_	- HeLD
22:03/40-421	Sil	12/13/55	1563		The Bend	KCTD
		•			<i>O</i> .	
			-			
		, ,		1	•	
Relinquished		e/Time:		lved By: Con	ments/Conditi	
Relinquished		e/Time:			ments/Conditi	7.
Lobute !		14/55-11	30 0.2	Russo 9	ood, on ice	•
Hethod of Sh		pped By:	1 /	<i>(</i> ,	ments/Conditi	•
Ci. X. Kirde	1/61	16/85 17	235 4	allect	and an we	
Received for Laboratory: LL billieu Authorization for Disposal:						
	ory Job No:				pe of Disposa	1:
Date/Ti	. /	6/8	1731	Da	ite of Disposa	1:

Job Number: 844182	2 Job Location: _	levek, New :	brzy	
Samples Collected	by : M 3-1	Sa	mpling Date:	
Time Sampling bega		finished: _	10/25/55	- 10/3/25
Collection Method	: Benne			
Sampling Equipment	Used: Solit Sacr	<u>>1</u>		
Sample Matrix	: <u>So./</u>			
Was Chain of Custo Were Samples Deliv	dy Implemented : ered to Lab on Ice:	YES & NO		
A	NALYSIS	REQUEST	E D	
Parameter	Container ID		reservative Used	Requested Turnaround Time(days)
TPHC	601/1-2'			
TPHC.	BB01/2-3'	• 1		
TPHC	BB02/2'			
TPHC	B602/3'			
TPHC	B300/5-7			F
TPHC, PCB	BB3/2'			
TPHL	BP3/3'		1	
TPHC	BBD4/3'			
TPHC	BBD4/5-7'			
TPHC	BBD4/9-11			
TPHC	BB05/21			
TPHC	B305/3'		4	
TPHC	<u>8606/21</u>	3.5		
TPHC	B306/3'			•
COMMENTS: Please rete	in Resent that he lo	in, three him be	en Excepted,	andysis keing
ANALYSIS REQUESTED	BY EXTENSE	ation only -		
FERSON ACCEPTING SA	MPLE: D.G. & alls	Date:	215/86 Ti	me:6 <u>9:</u> 7:/
LAB NAME: Dill	Und Till Ser.	LAR I.D. :	3	

LAR I.D. : <u>2000 3</u>

Constituent:	PCB					
Sample Identity	Amount Arochlor Type					
	Concentration, ppm by Weight	٤				
BBD1	15 1254	- ,				
BBD2	ND 10	•				
BBD3	ND 10	٠				
BBD4	ND 10					
BBD5	16 1260					
BBD6	ND 10					
BBD7	ND 10					
BBD8	ND 15	·.				
BBD9	17 1260					
BBD11	ND 10					
BBD12	ND 20					
BBD13	ND 10					
BBD14	65 1260					

ND=none detected, less than

Gollob Analytical Service

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464-3331

TO

Dr. D. Raviv Dan Raviv Associates 588 Eagle Rock Avenue West Orange, NJ 07052

G.A.S. REPORT No.

57163B

Date Requested:

1/18/85

Date Reported.

2/13/85

P. O. No.

84C182

MATERIAL SUBMITTED:

1 (One) Soil Sample - BBD 10

FFB 1 6 1985

Dan Raviv Associates, Inc.

INFORMATION REQUESTED:

Gas Chromatography Analysis

RECEIVED

NOTEBOOK REFERENCE:

CM 1063 page 1, CM 1023 page 59

RESULT OF INVESTIGATION

Subject sample, hand delivered to G.A.S. on 1/18/85, has been analyzed for the constituents requested.

All data are presented in the attached tables.

t 21485

By COLLOR ANALYTICAL SERVICE

Gas Chromatography Analysis

Constituent:		PCB (ma	/ka)	Date
Sample Identity		(1248)	(1254)	Analyzed
BBDC3/10-12'		ND 1	ND 1	2/7, 2/22
BBDC3/(0.5-2.5)	(2.5-4.51)	14	29	2/10,2/22
BBDC3/(0.5-2.5)	(2.5-4.5)Dup.	19	38	
BBD 19/3		ND 1	ND 1	2/7
BBDC1/5-7		ND 5*	ND 5*	2/10,2/22
BBD19/2'		. 8	24	2/7, 2/22
BBD19/2'(Dup.)		10	29	2/7, 2/22
BBD16/1-2'		90	123	2/12
BBD16/1-2'(Dup.)		85	144	2/12
BBD3/2'		23	ND 1	2/7,2/24
BBD3/2' Dup.		21	ND 1	,
BBD13/2		ND 5*	ND 5*	2/7
BBD8/2'		ND 1	. 5	2/10
BBD9/2		ND 1	ND 1	2/10
All Eutone		•		

All Extracted 2/7/86.

	A 35 1	8 Reco	very
BBD8/2' (Spike)	• •	133	100
	ye.	133	107

Date Extracted: 2/13/86
Date Analyzed: 2/14/86

ND=none detected, less than

*Higher threshold due to interferences, no Arochlor chromatographic fingerprint present.

mg/kg=milligrams/kilogram

<u>Cor</u>	centration	, millior	ams/kilogr	am '	
Sample Identity:	BED1 1-2'	BBD1 2-3	BBDC1 5-7'	BBD2	BBD2
Petroleum Hydrocarbo	ons 1480	530	8630	810	1130
Sample Identity:	BBD2 5-7'	BBDC3 0.5-2.5 2.5-4.5	BBD3	BBD3 31	BBDC3 10-12'
Petroleum Hydrocarbo	ons 610	5920	9630 7290 Du	7440 P.	190
Sample Identity:	BBD4 3'	BBD4 5-71	BBD4 9-11	BBD5 21	BBD5
Petroleum Hydrocarbo	ons 15,100	1190 900 Dur	940	1040	9180
All Extracted: 2/12 All Analyzed: 2/14/					
Sample Identity:	BBD6	BBD6 3'	BBD8 2'	BBD8 31	BBD9
Petroleum Hydrocarb	ons 2440	5900	31,200	173,000	410
Sample Identity:	BBD9 5-7'	BBD10 3'	- <u>BBD11</u>	BBD12	BBD12 3'
Petroleum Hydrocarb	ons 120	230	450	42	120
Sample Identity:	BBD13	BBD15 9-11'	BBD16 1-21	BBD17 5-7'	BBD19
Petroleum Hydrocarb	oons 1350	5230	20,800	20,800	1700
Sample Identity:	BBD19				
Petroleum Hydrocart	oons 130	up.			

All Extracted 2/13/86
All Analyzed 2/14/86

Dan Revie Associates Inc.

Dan Ray	iv Assoc	iates, Ir	C. PROJECT NA	ME	17	EST HOLE NUMBER		
West	Orange,	N.J.	Eyeue 3	oner 42		B30C3		
DETAIL	D DRILL	LOS	PROJECT/JOB SYCHT 2	NUMBER	- •	HEET <u>U</u> of		
DRILLING CO	MPANY + P.	16.	SITE		L	OCATION		
HAME of DRI	LEEN	-	LOGGED BY:	CHECKED S	_ I	LEVATION		
NUMBER	ACTURER !	SCOM CH	L DEPTH-TO GRO	UND WATER/D	ATE O	MENTATION VICE V		
FI RA	8 m j	(8)	OF HOLE 33	RECOVERY		TE STARTED DATE COMPLE		
Item. Service (Item	7.		finate.		C (1)	CLASSIFICATION OF BATSSIALS		
22						0-2.5'		
्छ					1	River Skore y, s. el fil		
35			Water level		4	<u> </u>		
	, ,		But 3/3"		1	Block stay of my girt		
55			sifice lin		4	5-7'		
			meticial - p			angular sorty type		
5			Luc to wet.	-27 -	4	10-12'		
4			offere to ch	e 2,000		Marco ret-bizan		
			1,0,2 02/8	·r-		redien jizandi well		
4			in			Swafed Same		
4		· .			.]			
					1			
				•	1			
					1	• 🕳 🦫		
			4		1			
			This became	225	1			
						•		
						•		
				-				
.					.			

DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER DETAILED DRILL LOS PAGNECT/JOS NUMBER LOCATION BLEVATION DOBLEY MANUFACTURER AND MODEL DEPTH TO AROUND VATAL DATE DATE STORM PAGNECT/JOS ORIENTATION DATE STORM PAGNECT/JOS ORIENTATION DATE STORM PAGNECT/JOS NUMBER LOCATION DETAILED DRILL LOS DETAILED DRILL DOCATION DATE STORM PAGNECT/JOS NUMBER LOCATION DETAILED DRILL DETAILED DRILL DATE STORM DATE DA	V 2 1 1		
DRILLING COMPANY JETHEN Zering and Drillies LOGGED BY: WAME OF DRINGER OCCUPY TAMPALL DRILLY MANUFACTURER AND MODEL DEPTH TO GROWND WATEL DATE STORY DEPTH TO GROWND WATEL DATE STORY DEPTH TO GROWND WATEL DATE STORY DEPTH TO GROWND WATEL DATE DATE STARTED DAT	BBOCS SHEET of		
MAME OF DRICKER WE COME TRUTCHED DEPTH TO AROUND WATER DATE OF BIT (8) DEPTH TO AROUND WATER DATE OF BIT (8) DEPTH TO AROUND WATER DATE OF BIT (8) OF HOLE 71 RECOVERY DATE STARTED DATE STARTED DATE SO 10/17/35 10/			
STILL HAMUFACTURER AND BODEL DEPTH TO GROUNDWATED DATE CONTROL OF PROPERTY STATED DATE CONTROL OF HOLE 7/ PRECOVERY DATE STARTED DATE CONTROL OF HOLE 7/ PRECOVERY DATE STARTED DATE CONTROL OF HOLE 7/ PRECOVERY DATE CONTROL OF HAME CONTROL			
Strong where Strong where G-1-6 ft 2/4 6 Sieen TOTAL BETT TOTAL COME DATE STARTED JOINT 100 100 100 100 100 100 100 100 100 10			
Strong where Strong where Strong where 1-6 ft 2/4" 6 Steel screen	PLET 6		
2 Pood grand and site of Pood grand and site			
Strong when Strong when the sound the sound the sound the sound the sound the strong of the strong o	• , ,		
Strong where Strong where Brilled to Sover ft 0-7' Bleck silly fill puist to well, 1-6 ft 214" 6 Heel Green	fack		
Strong where Strong where Drilled to Seven ft 0-1 ft 2 4 casing 1-6 ft 2 4 6 Steel Green			
Brilled to Seven ft 0-1 ft 214 cosiny 1-6 ft 214" 6 steel Green			
Brilled to Seven ft 0-1 ft 214 cosiny 1-6 ft 21/4" \$ steel screen			
3- Steel screen			
3- Steel screen	•		
	•		
	· •		
	1		

Appendix C

Chain of Custody Forms

January 18, 1985

Gollob Analytical Service 47 Industrial Road Berkeley Heights, New Jersey 07922

Attention: Lou Molinini

Re: Transfer of Soil Samples and Request for Analysis Bayonne Barrel and Drum Company Job No. 84C182

Gentlemen:

Please find attached a copy of the Chain of Custody form for the samples from the subject site. These samples were transferred to your laboratory by David Morrow, Geologist, of Dan Raviv Associates, Inc. on January 18, 1985. The purpose of this letter is to confirm our instructions regarding the type of analysis to be performed. The analyses requested are indicated in the "Remarks" column opposite each of the samples listed on the attached form.

We request 13 analyses to determine the presence and concentrations of PCB's (samples #1 through #9 and #11 through #14) and 1 analysis to determine EP-Toxicity characteristics (Sample #10). Sample #10 is a composite of samples #2, #5 and #8. Please analyze and report as soon as possible.

If you have any questions, please call.

Very truly yours,

DAN RAVIV ASSOCIATES, INC.

Dan D. Raviv, Ph.D. President

DDR/sm Enc.

cc: William K. Sawyer, Esq.
Waste and Toxic Substances Branch
USEPA - Region II

PROJECT NO.	84018	2	PRO	JECT NAME_	BAYO	nne Bar	rel & Devan
LOCATION E	Pirone N	<u> </u>	LAB	ORATORY			
				<u> </u>			
SAMPLE NO.	TYPE (WATER/SOI	L) DATE	TIME	TOTAL # (MPLERS GNATURE	REMARKS
1-0/1008	50:1	10/25/85	0934	277	24	1. Hul	VOA, (1) TPHC(2)
BB01/1-2	Soil	10/25/85	0940	277	K	Guel	(4)
BBD 1/2-3'	5.11	10/25/25	0620	27	14	3el	
BBD2/1'	5:1	10/25/55	1057	174	يز ا	131	VOA, TPHC
8305/3,	5:/	10/25/8	1102	194	M	. Zech_	
BBD2/3'	Soil	10/25/3	1104	1.91	x	Zuch_	
BB03/1'	Jo:/	10/25/8	1200	194	251	3ml	TPHC, PCB(3)
3303/21	2:/	1925/8	1213	195	34	Zul	
8303/31	50;/	10/25/35	1224	124	14	Bul	
BBD4/1.	Soil	10/25/85	1402	194	14	Beck	
33D4/21	5/	10/25/85	1404	194	14	Buch	ТРНС
BBD 4/3	ا، ظ	10/25/85	1407	15+	И	P3-1	
Relinquished W. Zun	· ·	Date/Time: 0/28/F5 1814		ived By:		ts/Condit	Λ
Relinquished	d By:	Date/Time:	Rece	ived By:	Commen	ts/Condit	ion:-
Method of Si	hipment:	Shipped By:	Rece	ived By:	Commen	ts/Condit	ion:
Receive	ed for Labor	atory; 7/6	allee	ur .		rization Sisposal:	
Laboratory Job No:				_ Type	of Dispos	al:	
Date/T	ime:					of Dispos	
VOA = Volatil			lysis.	(4) Please	Hou	o all so	aples not Analysis.
TPHC = Total	Petroleum Hyd	drocarbons A	nalysis.	Current	Hy lis	Ted for	Analysis.

(1)

. 21

(2) TPHC = Total Petroleum Hydrocarbons Analysis.

PROJECT NO.	84018	2	PRO	JECT NAME	BAYONNE BERN	el & Drim
LOCATION	ayone. A	שבע	LAB	ORATORY		
					-	
SAMPLE NO.	TYPE (WATER/SOI	L) DATE	TIME	TOTAL # OF CONTAINERS	SAMPLERS SIGNATURE	REMARKS
3305/1	Soil	10/25/85	1422	184	Kl. Zuch	ТРНС
3305/21	So,"/	10/25/85	1444	194	Azer	
BBD5/3'	Seil.	10/20185	1449	154	14.3el	
3306/1	Soil	10/25/85	1505	194	MZL	ТРНС
छिछ ६/३/	5:1	10/25/85	1507	194	M3ml	
B30 6/3'	501/	10/25/85	1511	194	W. Zend	
		•				
					, , , , , ,	
•						
	•			1		
Relinquished	- 1	Date/Time: 19/28/5- 18/4			omments/Condition	ion:
Relinquished		Date/Time:			omments/Condit:	ion:
Method of Si	hipment:	Shipped By	Rece	ived By: C	omments/Condit:	ion:
Receiv	ed for Labor	ratory.	Salle	ur	Authorization for Disposal:	•
	tory Job No:				Type of Dispos	al:
Date/T	ime:	1			Date of Dispos	al:

\ \latile Organic Analysis (GC-MS)

data are presented in the attached table listing the priority pollutant instituents detected in excess of 20 ppb by weight. The non-priority pollutant constituents detected in excess of 20 ppb are listed in the following table

Sample Identity:	BBDC 3/5-7'	BBDC 4/5-7'
Constituents Detected	Concentration,	
Carbon Disulfide		40
Cyclohexane		50
Isopropyl Cyclopropane		70
C7 H ₁₄ Hydrocarbons	200	150
Xylene Isomers	9600	4300
C ₉ H ₁₂ Hydrocarbons	2000	800
C ₉ H ₁₀ Hydrocarbons	330	80
C7 H ₁₀ Hydrocarbons		30
C ₁₀ H ₂₀ Hydrocarbons		180
C ₁₀ H ₁₉ Hydrocarbons	100	

Samples Extracted 12/30/85 Samples Analyzed 12/31/85

Samples: GEE:

BBDC3/15-17' ND 20

C3/20-22' ND 20

C4/15-17' ND 20

for New Princip Constituents

Es for plane Consession at
Low declinin, 4/1/36 M3

Concentration, ppb by Weight Dan Raviv Associates Wolatile Ormanic Analysis by EPA Method 624 RED BED 350 350 Sample Identification: Pollutants Chloromethane Bronomethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1,-Dichloroethylene 1,1-Dichloroethane 1,2-Dichloroethylene Chlorofora 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethylene. 265 90 Benzene 26 Dibromochloromethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Chloroethylvinyl Ether Bronoform 1,1,2,2-Tetrachloroethene 1,1,2,2-Tetrachloroethane 1700 **2200** 20 Toluene 650 330 Chlorobenzene Ethylbenzene 3700 790 10 1,3-Dichlorobenzene 87 320 1,2 & 1,4-Dichlorobenzene Samples Prepared 12/30/85 Samples Analyzed 12/31/85 Limit of Detection 20 ppb

Dr. Dan Kaviv

Gollob Analytical Service

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331

Dan Raviv Associates, Inc.

MAR 24 1986

Dr. Dan Raviv Dan Raviv Associates 5 Central Avenue West Orange, NJ 07052 G.A.S. REPORT No.

Date Requested: 1/7/86

Date Reported:

2/28/86

P.O. No.

STERIAL SUBMITTED.

6 (Six) Water Samples

(BBD)

INFORMATION REQUESTED:

Gas Chromatography Analysis

NOTEBOOK REFERENCE:

GC/MS 1148, Page 17 and LP 1154, Page 14

RESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 1/7/86, have been analyzed for the constituents requested and reported in the following tables.

page 1 of 7 n 3786

AIMA CERTIFIED MASS-SPECTROMETRY GAS ANALYSIS CAS CHROMATOGRAPHY LIQUID CHROMATOGRAPHY

PCB Analysis by Gas Chromatography

Sample Identity (water Samples)	•	PCB Concentration	, micrograms/liter
BBDC1		ND 1	
BBDC2	1	ND 1	
BBDC3		ND 1	
- BBDC5		53*	
BBDC6		ND 1	

Sediment Separated From

Milligrams/Kilogram

Sample Identity

BBDC5

%08

*Characteristic of Arochlor 1254

ND=None detected, less than

Volatile Organics (EPA Method 624)

All data are presented in the attached table listing the volatile priority pollutants and non-priority constituents detected.

Wolatile Ormanic Analysis by EPA Method 6	24		Deri.		(35)	,		Dupl	•					·
Sample Identification: Pollutants	Cl	CZ.	Œ	0	æ	G	œ	Œ	1	_		•		
	10-5		NO-				10-5	10-5						
Chloromethane:	,,,,,	1		`	1		روس	رحا			1	l	*	
Bromomethane			1	1 .			1 1	11				.	:	1
Vinyl Chloride	11.		1 1											
Chloroethane					1		11	11				. (1
Nethylene Chloride								11		1				1
Trichlorofluoromethane					1		11							
1,1,-Dichloroethylene										1		٠.,		1
1,1-Dichloroethane		1					11	11	1		ı		l ·	ľ
1,2-Dichloroethylene							11	-					٠,	1:
Chlorofora				25			44				1		·'	
1,2-Dichloroethane							11	. 25	1		1			
	11	5			4					, °				1
1,1,1-Trichloroethane		'				1						•		1
Carbon Tetrachloride	11							1		- 1	.	•		Ç
Bromodichloromethane		1		5	1	. • •					1			
1,2-Dichloropropane						<i>i</i>							1	
trans-1,3-Dichloropropene									st.	<i>′</i>			1	
Trichloroethylene		1			- 1	1		11.			j		.	-
Benzene	1.1				د [ا	28						ļ	1	
·Dibromochloromethane														
cis-1,3-Dichloropropene							- 1 .						1 .	
1,1,2-Trichloroethane		1					1						, .	
	s	-				` .							1	
2-Chloroethylvinyl Ether			•									1	1	1
Bronoform	' 				٠] .								ľ	
1,1,2,2-Tetrachloroethene									11		i	1.	1	
1,1,2,2-Tetrachloroethans			,			,								
Toluene	- 1			` '		5 1	50							
Chlorobenzene	'				·	1	67	!						.
Sthylbensene		1				μo	50						1	
1,3-Dichlorobenzene	1							:					- [
1.2 & 1,4-Dichlorobensens	_] ·	~	- 1	Y].		76	~	`					- [
						' '		1	1	:			-	·]
	ŀ					٠. ب	.					1.	_1	- 1
Non-Priority Pollutants (Method 624)		Α.				٠. ا	. ·							1
Onlorof luorane thene	1	10				Ì		iĐ			1	1	- [1
Dichlorof horone thane		70			* *						1	Ì	: 1.	`
Di-isopropylether Diethylether		15	10	20		30		.						.
2,4,4-Trisethylpentene			10	10		-	- 1			1				.
Xylene Ischers						15	2000	. 1		1	\ ' '			
Cyclohexane							60		• • • • • • • • • • • • • • • • • • • •					- 1
Me thy leyelopentane							30		, ,	1	1		- 1	1
Cycloneptare				4.5			100	,			1			
Isopropy Ibenzene n-propy Ibenzene	- 1					. 1	150	Ì			.	1		· · [
Ethyl Toluene Isomers	1	• 1				35	550	1.			1		- }	. [
Trizethylbenzene Isonors							1400							.
Cy Corround	` . ·			. 1		. 2	240					1		
														·
				4.7										

etals - Atomic Absorption Analysis

Sample Identity:	BBDC-4 Milligrams/liter	<u>Date</u> Extracted	<u>Date</u> <u>Analyzed</u>		
Constituents	milligrams/liter				
Antimony	ND 0.5	1/9/86	1/24/86		
Arsenic	0.01	1/22/86	1/22/86		
Beryllium	ND 0.01	1/9/86	1/14/86		
Cadmium	ND 0.01	1/9/86	1/10/86		
Chromium	ND 0.01	1/9/86	1/10/86		
Copper	0.04	1/9/86	1/10/86		
Lead	ND 0.1	1/9/86	1/10/86		
Mercury	ND 0.002	1/9/86	1/15/86		
Nickel	ND 0.01	1/9/86	1/10/86		
Selenium	ND 0.007	1/15/86	1/10/86		
Silver	0.03	1/9/86	1/10/86		
Thallium	ND 0.1	1/9/86	1/24/86		
Zinc	0.03	1/9/86	1/10/86		
Cyanide	- ND 0.004	1/14/86	1/15/86		
Phenol	ND 0.03	1/24/86	1/27/86		

ND=None detected, less than ,
Sample filtered through a 0.45 micron filter prior to analysis.

Petroleum Hydrocarbons

Sample Identity:	BBDC1	BBDC2 BBI	DC3	BBDC5	BBDC6
		Milligrams/li	iter		
Petroleum Hydrocarbons	2.8	3.7 4.	.8	2000	1.8

Date Extracted: 1/9/86
Date Analyzed: 1/10/86

Micrograms/liter

Fluoranthene Fluorene Heptachlor Heptachlor epoxide MD-10 Hexachlorobenzene MD-10 Hexachlorobutadiene MD-10 Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone ND-10 Naphthalene NItrobenzene ND-10 N-Nitrosodi-n-propylamine PCB-1212 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1254 PCB-1250 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC y-BHC Endosulfan I Endosulfan II	()	. E-500/
Fluorene Heptachlor Heptachlor epoxide Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indenol 1, 2, 3-cd)pyrene Isophorone ND-10 Naphthalene ND-10 N-Nitrosodi-n-propylamine PCB-1016 PCB-1221 PCB-1232 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Phenanthrene Pyrene Toxaphene 1, 2, 4-Trichlorobenzene ND-10 Renzidine a-BHC y-BHC Endosulfan II Endosulfan II Endorin Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10	Elizabethan	BBDC4
Heptachlor epoxide Hexachlorobenzene Hexachlorobutadiene Hexachlorocthane Indeno[1,2,3-cd]pyrene Isophorone No-10 Naphthalene Nitrobenzene No-10 N-Nitrosodi-n-propylamine PC8-1016 PC8-1221 PC8-1232 ND-10 PC8-1248 PC8-1248 PC8-1254 PC8-1254 PC8-1260 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Rendosulfan I Endosulfan II Endosulfan II Endosodimethylamine ND-10 ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 ND-10 Hexachlorocyclopentadiene ND-10		
Heptachlor epoxide Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone ND-10 Naphthalene NI-10 N-Nitrosodi-n-propylamine PC8-1016 PC8-1221 PC8-1232 PC8-1242 ND-10 PC8-1248 PC8-1254 PC8-1254 PC8-1260 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Rendosulfan II Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 ND-10 Hexachlorocyclopentadiene ND-10		
Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone ND-10 Naphthalene ND-10 N-Nitrosodi-n-propylamine PCB-1016 PCB-1221 PCB-1232 ND-10 PCB-1242 ND-10 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Phenanthrene ND-10 Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC 7-BHC Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
Hexachlorobutadiene Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone ND-10 Naphthalene ND-10 N-Nitrosodi-n-propylamine PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1250 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC 7-BHC Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 ND-10 Hexachlorocyclopentadiene ND-10	Heyachlorehoone	,
Hexachloroethane Indenol 1, 2, 3-cd) pyrene Isophorone ND-10 Naphthalene ND-10 N-Nitrosodi-n-propylamine PC8-1016 PC8-1221 PC8-1232 PC8-1242 PC8-1248 PC8-1254 PC8-1254 PC8-1250 Phenanthrene Pyrene Toxaphene 1, 2, 4-Trichlorobenzene ND-10 Benzidine a-BHC 7-BHC Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 Indenol 1, 2, 4-Inchlorobenzene ND-10 Endrin Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10	Hexachioropenzene	
Indeno(1,2,3-cd)pyrene ND-40 Isophorone ND-10 Naphthalene 14 Nitrobenzene ND-10 N-Nitrosodi-n-propylamine ND-10 PC8-1016 ND-10 PC8-1221 ND-10 PC8-1232 ND-10 PC8-1242 ND-10 PC8-1248 ND-10 PC8-1254 ND-10 Phenanthrene ND-10 Phenanthrene ND-10 Pyrene ND-10 I,2,4-Trichlorobenzene ND-10 Benzidine ND-50 a-BHC ND-10 Endosulfan I ND-10 Endosulfan II ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10		
Isophorone Naphthalene Nitrobenzene ND-10 N-Nitrosodi-n-propylamine PCB-1016 PCB-1221 PCB-1232 ND-10 PCB-1242 ND-10 PCB-1248 PCB-1254 PCB-1254 PCB-1260 Phenanthrene ND-10 Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC y-BHC Endosulfan I Endosulfan II ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10		^
Naphthalene Nitrobenzene ND-10 N-Nitrosodi-n-propylamine PC8-1016 PC8-1221 PC8-1232 ND-10 PC8-1242 ND-10 PC8-1248 PC8-1254 PC8-1254 PC8-1250 Phenanthrene ND-10 Phenanthrene ND-10 Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC y-BHC Endosulfan I Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10	Isochorna	\
Nitrobenzene ND-10 N-Nitrosodi-n-propylamine ND-10 PC8-1016 ND-10 PC8-1221 ND-10 PC8-1232 ND-10 PC8-1248 ND-10 PC8-1254 PC8-1254 ND-10 Phenanthrene ND-10 Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC 7-BHC Endosulfan I Endosulfan II ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
N-Nitrosodi-n-propylamine PC8-1016 PC8-1221 PC8-1232 ND-10 PC8-1242 ND-10 PC8-1248 ND-10 PC8-1254 PC8-1254 ND-10 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC 7-BHC Endosulfan II Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-10 ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine		•
PC8-1016 PC8-1221 PC8-1232 PC8-1242 PC8-1248 PC8-1254 PC8-1250 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC 7-BHC Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 PC8-1260 ND-10		
PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1250 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC Tokaphene Indosulfan I Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10	PC8-1016	
PCB-1232 PCB-1242 ND-10 PCB-1248 ND-10 PCB-1254 PCB-1260 Phenanthrene ND-10 Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC 7-BHC Endosulfan II Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
PC8-1242 PC8-1248 PC8-1254 PC8-1250 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC Toxablen Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
PCB-1248 PCB-1254 PCB-1260 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC 7-BHC Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
PC8-1254 PC8-1260 Phenanthrene Pyrene Toxaphene 1,2,4-Trichlorobenzene Benzidine a-BHC Toxable Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10		
Phenanthrene ND-10 Pyrene ND-10 Toxaphene ND-10 1,2,4-Trichlorobenzene ND-10 Benzidine ND-50 a-BHC ND-10 Endosulfan I ND-10 Endosulfan II ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10	PC8-1254	
Phenanthrene Pyrene ND-10 Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine ND-50 n-BHC ND-10 Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine	PCB-1260	ND-10
Pyrene Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine a-BHC Y-BHC Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10 ND-10	Phenanthrene	
Toxaphene 1,2,4-Trichlorobenzene ND-10 Benzidine ND-50 n-BHC ND-10 Findosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 ND-10 ND-10 ND-10 ND-10	Pyrene	
1,2,4-Trichlorobenzene ND-10 Benzidine ND-50 a-BHC ND-10 Y-BHC ND-10 Endosulfan I ND-10 Endosulfan II ND-10 Endrin ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10		
Benzidine a-BHC ND-10 Y-BHC Endosulfan I Endosulfan II Endrin Hexachlorocyclopentadiene ND-10 N-Nitrosodimethylamine ND-10	1,2,4-Trichlorobenzene	-
7-8HC ND-10 Endosulfan I ND-10 Endosulfan II ND-10 Endrin ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10	Benzidine	ND-50
Endosulfan I ND-10 Endosulfan II ND-10 Endrin ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10	a-BHC	ND-10
Endosulfan II ND-10 Endrin ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10	. ♥ . f	ND-10
Endrin ND-10 Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10		ND-10
Hexachlorocyclopentadiene ND-50 N-Nitrosodimethylamine ND-10	· · · · · · · · · · · · · · · · · · ·	ND-10
N-Nitrosodimethylamine ND-10		ND-10
	Hexachlorocyclopentadiene	ND-50
N-Nitrosodiphenylamine ND-10		ND-10
	N-Nitrosodiphenylamine	ND-10

ND=None detected, less than

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 MAR . 6 1086

RECEIVED

Dan Raviv Associates, In

TO.

Dr. D. Raviv Raviv Associates 5 Central Avenue West Orange, NJ 07052

G.A.S. REPORT No.

60122

Date Requested:

2/5/86

Date Reported:

3/5/86

P.O. No.

84C182

MATERIAL SUBMITTED.

31 (Thirty One) Soil Samples - BBD

INFORMATION REQUESTED: Gas Chromatography, Petroleum Hydrocarbon Analyses

NOTEBOOK REFERENCE:

RESULT OF INVESTIGATION

Samples previously submitted under the following G.A.S. numbers: 59359, 59360, 59652, 59411, 59397, 59764 have been analyzed for the constituents requested. The following samples were not available for re-analysis: BBD10/2', BBD17/2-3', BBD18/2', BBD18/3'.

Holding times on all samples have been exceeded. However, the analyses are being performed for the purpose of delineation only.

Results are presented in the attached tables.

page 1 of 3 t 3586

GOLLOB ANALYTICAL SERVICE

MOLININI-GOLLOB, INC.

Dan Raviv Associates, Inc. 840182

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331

.o. Dr. Dan Raviv Dan Raviv Associates 5 Central Avenue West Orange, N.J. 07052

G.A.S. REPORT No. 60535 Formerly (59397)

Date Requested: 11/1/85 Date Reported 12/23/85 P.O. No. 84C182

NATERIAL SUBMITTED.

30 (Thirty) Samples BBD1 (3 Analyzed)

IF FORMATION REQUESTED:

Gas Chromatography/Mass Spectrometry Analysis

NOTEBOOK REFERENCE:

LM 1183, Page 1

ESULT OF INVESTIGATION

This completes the analysis of subject samples for the presence of Base Neutral and Acid Extractible constituents.

All data are presented in the attached tables.

n 32786

Acid Extractable Constituents

	Millig	rams/kilogram	
Sample Identity:	BBD 13/1	BBD 15/1	BBD 12/1
4-Chloro-3-methylphenol	ND 0.5	ND 0.5	ND 0.5
2-Chlorophenol	ND 0.5	ND 0.5	ND 0.5
2,4-Dichlorophenol	ND 0.5	ND 0.5	ND 0.5
2,4-Dimethylphenol	ND 0.5	ND 0.5	ND 0.5
2,4-Dinitrophenol	ND 0.5	ND 0.5	ND 0.5
2-Methyl-4,6-dinitrophenol	ND 0.5	ND 0.5	ND 0.5
2-Nitrophenol	ND 0.5	ND 0.5	ND 0.5
4-Nitrophenol	ND 0.5	ND 0.5	ND 0.5
Pentachlorophenol	ND 0.5	ND 0.5	ND 0.5
Phenol	ND 0.5	ND 0.5	ND 0.5
2,4,6-Trichlorophenol	ND 0.5	ND 0.5	ND 0.5
Date Extracted:	11/13/86	11/13/86	11/13/85

Date Extracted: 11/13/86 11/13/86 11/13/85

Date Analyzed: 12/5/86 12/6/86 12/6/86

ND=None detected, less than

Dr. D. Raviv Raviv Associates

Petroleum Hydrocarbons (Infrared Analysis - EPA 418.1)

Petroleum Hydrocarbons milligrams/kilograms

Sample Identity	Extracted	Analyzed
BBD 17/S 16000	11/12/85	11/14/85
BED 17/1' 9210	11/12/85	11/14/85
BBD 18/1 16300	11/12/85	11/14/85
BBD 19/1' 4330	11/12/85	11/14/85
BBD S1 23700	11/12/85	11/14/85
BBD W1 670	11/13/85	11/14/85
BBD S3 850	11/13/85	11/14/85
BBD S4 39400	11/13/85	11/14/85

Note: Dioxin & B/N Extractibles will be reported at a later date.

Metals-Atomic Absorption Analysis

Sample Identity:	BBD 17/1'
Constituents	milligrams/kilograms
Antimony	6.0
Arsénic	56
Beryllium	0.50
Cadmium	6.56
Chromium	2300
Copper	128
Lead	370
Mercury	1.6, 2.3*
Nickel	56.8
Selenium	0.023
Silver	1.7
Thallium	ND 0.4
Zinc	5040

ND=none detected, less than *Duplicate Analysis

Date Extracted: -11/11/85 Date Analyzed: 11/14/85

Chemical Analysis

Sample Identity:	BBD 17/1'
Constituents	milligrams/kilogram
Cyanide	0.5
Phenol	20

Date Extracted: 11/13/85
Date Analyzed: 11/14/85

Polychlorinated Biphenyls-(Electron Capture Detector & Hall Electrolytic Conductivity Detection)

Constituent:	Arochlor	1248	Arochlor 1254
Sample Identity	Concentr	ation, p	opm by Weight
BBD 17/S	14	***	14
BBD 18/1'	125		195
BBD 19/1'	3.4		34
BBD S1	33	•	97/
BBD S2	45		35
BBD S4	3.1		.8.0

Concentration, ppb by Weight

ND 1 ND 1

Date Extracted: 11/7/85
Date Analyzed: 11/15/85

ND=none detected, less than

MOLININI-GOLLOB, INC.

846183 JLN 1 . 155

Dan Raviv Associates, 1

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331

RECEIVED

To Dr. Dan Raviv Dan Raviv Associates 5 Central Avenue West Orange, NJ 07052

G.A.S. REPORT No. 59764

Date Requested: 12/17/85 1/14/86 Date Reported P.O. No. 84C182

IATERIAL SUBMITTED.

14 (Fourteen) Soil Samples (BBD)

VEORMATION REQUESTED:

Gas Chromatography & Infrared Analyses

HOTEBOOK REFERENCE:

GC/MS 1157, Pg. 3; SW 1116, Pg. 50

.. ESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 12/17/85, have been analyzed for the constituents requested and listed in the tables attached.

n 11586

Petroleum Hydrocarbon Analysis (Infrared)

Sample Identity	Petroleum Hydrocarbons Milligrams/kilogram
BBDC3/5-7'	59,000
BBDC4/5-7'	3,100, 3,600
BBDC4/10-12'A	34
BBDC4/10-12'B	82
BBDC4/15-17'	ND 10
BBDC3/15-17'	28
BBDC3/20-22'	58

Samples Extracted 1/2/86
Samples Analyzed 1/3/86

Polychlorinated	Byphenvls	Analysis	(ECGC)	Arochlor	1248	Arocl	ílor	1254
Sample Identity	,			Concentr	ation.			Kilogram
BBDC3/20-22'			1 .	ND 1			1	
BDC4/15-17'				ND 1			1	
BBDC4/10-12'A				ND 1≭	•		1	
BBDC4/10-12'B				ND 1) 1	
BBDC3/15-17'			* *	ND 1*	·	NI	-	
BBDC4/5-7'				1.4	٠ • هد		2.0	1
BBDC3/5-7'				67			74	
		:		. •••			, ¬	

*Trace detected below the threshold reported. Samples Extracted 12/10/85
Samples Analyzed 12/19/& 12/23/85

ND=none detected, less than ,

Sample Identification:	880¢1	\$30¢1	etes) Soil	·	22200		
Pollutants	10-21	3=7**	Enia.	Bub.	1825		
Dioromethane	ND 20	1			ND 20		
roncmethane			1. XX		1,1		
/inyl Chloride							
Dioroethane							
lethylene Chloride				\ \ .			
Frichlorofluoromethane							/
L,1,-Dichloroethylene		<u> </u>					
1,1-Dichloroethane			1 M - 1			$r^{r_{i+1}}$	}
,2-Dichloroethylene						1	
blorefera							
,2-Dichloroethene		1				, - · ·	į ·
,1,1-Trichloroethane						<u> </u>	
arbon Tetrachloride	1 1						
romodichloromethane							1
,2-Dichloropropane				1 1 1 1			
rans-1,3-Dichloropropene		1 m					1
richloroethylene							
enzene		410	50	51		1.7	
ibrosochloromethane							
ls-1,3-Dichloropropens			,	, , , , ,			
,1,2-Trichloroethane							
-Chloroethylvinyl Ether	1 1			1		,	
tomoform							
		· `					
,1,2,2-Tetrachloroethene							. :
,1,2,2-Tetrachloroethane			***				
olvene			71	- 84			
hlorobenzene							
thylbenzene		2300					•
, 3-Dichlorobenzene							
,2 & 1,4-Dichlorobenzene	4 ×						1
ر المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المر المراجع المراجع							
on Priority Pollutants					•		-
arbon Disulfide (Estimated) ethyl Isobutyl Ketone(Est.)	ND		120	20	36		
ylenes (Actual)		800	120 130	120 140			
9810 Isometric (Estimated)		1100					1
H ₁₂ Isometric (Estimated)		260	\	·			
				$C_{X_{i}} = C_{i}$	100		
DeNone detected, less than					```		
			,				
	***	4.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
						. :	-
	1						•
		1					l .
	1 ' :	1	1	100			l .

Den Porte Associate

Gollob Analytical Service

AT INDUSTRIAL ROAD BERKELEY HEIGHTS, NEW JERSEY 07922 TEL. [201] 464-3331 MOLININI-GOLLOB, INC. March 19, 1986 84 (182 MAR ? . 1981.

RECEIVED

Dear Mike:

As per our recent phone conversation, please destroy the 1st page of G.A.S. 59883 and replace with the enclosed copies.

Thank you.

Lou Molinini

Dan Raviv Associates, Inc.

Gollob Analytical Service

MOLININI-GOLLOB, INC.

DEC 23 965

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 4647337

TO Dr. Dan Raviv
Dan Raviv Associates
5 Central Avenue
West Orange, N.J. 07052

G.A.S. REPORT No. 59652

Date Requested: 12/4/85
Date Reported: 12/13/85
P.O. No. 84C182

I ATERIAL SUBMITTED:

7 (Seven) Soil Samples (Bayonne Barrel)

FORMATION REQUESTED:

Gas Chromatography Analysis

NOTEBOOK REFERENCE:

GC/MS 1148, Page 1 and CM 1084, Page 144

SULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 12/4/85, have been analyzed for the constituents requested, and are listed in the attached table.

n 122085

GOLLOR ANATICAL SERVICE

Petroleum Hydrocarbon Analysis by Infrared Spectroscopy

Sample Identity	Quantity Milligrams/kilograms
BBDC1/0-2'	830
BBDC1/10-12'	410
BBDC2/5-7'	670
BBDC2/10-12'	14
Samples Extracted 12/9/85	

Polychlorinated Biphenvls - ECD & HECD

Sample Identity	Concentration, ppm by Weight*
BBDC1/0-2'	10.3
BBDC1/0-2' Duplicate	8.7
BBDC1/10-12'**	ND , 1
BBDC2/5-71	2.0
BBDC2/10-12'**	ND 1
C1 Puber-shed 12/5/85	

Samples Extracted 12/5/85 Samples Analyzed 12/11/85

Samples Analyzed 12/9/85

**Determined by Electron Capture Detection, all others by Hall Electrolytic Conductivity Detection.

ND=None detected, less than

Volatile Organics - EPA Method 624

All data are presented in the attached table.

^{*}Based on Arochlor 1260

Wolatile Ormanic Analysis by E	PA Nethod 6	124Sol1			<u> </u>	Nates								
Sample Identification: Pollutants	<u> 330-</u>	17/5	17/1.	17/1' Days.	19/1	52	54	20	MJ				: :	
Chloromethane					20 20	NO 20		20 5	NO 5	1			`	
Bromomethane	· · · · ·	1			"				~ 3			` .		
Vinyl Chloride		170	89	170										٠,
Chloroethane		33	"											
Methylene Chloride	٠,	740	130	١				1					Ī	
Trichlorofluoromethane			130	91										١.
							1						•	
1,1,-Dichlerosthylene		28			1					,		ŀ		
1,1-Dichloroethane		7000	250	240	1								·	ŀ
1,2-Dichloroethylene		5700	150	120	ł							Ì		
Chloroform		100	42	21	•		ŀ							
1,2-Dichloroethane		78	36	32		:								1
1,1,1-Trichloroethane		850	510	211	1			ŀ].	1
Carbon Tetrachloride	, j	1						1 -						1
Bromodichloromethane			1		ľ		1 :		l					
1,2-Dichloropropane	,	52			1.					· .			`	1
trans-1,3-Dichloropropene			1: :				1							
Trichloroethylene	:	830	240	210			<u> </u>	1	, .					
Benzene		220	130	87								1		
Dibromochloromethane	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1.	1.	j					l		
cis-1,J-Dichloropropene		1					1		1			`		l
1,1,2-Trichloroethane	· · · · · · · · · · · · · · · · · · ·	220	100	92						` '		. ,		۱.
2-Chloroethylvinyl Ether	•	220	100	72				1	1	1		1		
Bremeform		}	-											
1,1,2,2-Tetrachloroethene		290	94	71	1			1 .	1		٠.			
			1 "	∤ ″	·	٠,			Ĭ			1		1
1,1,2,2-Tetrachloroethane		1	,		1				1	1	•		1	
Toluene		1400	7500	6400			39		l '			'		
Chlorobenzene		49	30	22							ł] .		
Ethylbenzene		2700	2200	1600	1 /								,	
1,3-Dichlorobenzene					1		1	1	1			-		
1,2 & 1,4-Dichlorobenzene		93	63	79								ľ	·	
						ł								
	$i_i^{i_{i_1}} \cdots i_{i_n}^{i_n}$					1								
	· · · · ·					1		1						1
		1	1				1		Ì					1
			1 . 5									1]	١.
				1						``	ļ. ·			
• • • •			1	1			1				1			'
		1	1			1					1	1		١.
						1				-				
		1	1									1		-
		1			1		1		1	1	1		1],
							1.							
						1	1	1	1		1	1	1	
						,			1				Ĭ	ŀ
			.1	1			,	. -	1		1	. i	ſ	1

Non Priority Pollutants

		Water				
Sample Identity: BBD-	<u>17/s</u>	17/1'	. 17/1'*	19/1'	<u>52</u> <u>S4</u>	20
<u>Constituents</u>		Concent	ration, r	opb by We	ight	
m-Xylene	3900		,	ND 20	ND 20	ND 5
o/p Xylene	3400				1	
Cyclopropane	30				,	
Acetone	70	130	130		: 25	
Dimethyl Sulfide	30					
Isopropanol	50	•				
Carbon Disulfide	` 50	30 .	15		•	
Methyl Ethyl Ketone	110	170	140		•	
Freon 113	20				•	
Cyclohexane	50	40	20			
Hexane	25	25	15			
Methyl Isobutyl Ketone	550	730	500		•	
4-Methyl-2-Pentanol	140	160	85		20	
C ₆ H ₁₂ Aliphatic Hydrocarbons	100	30	35			
C7 ^H 14 Aliphatic Hydrocarbons	120	40	80			
C ₉ H ₁₂ Aromatic Hydrocarbons	60	40	35			
C ₉ H ₁₂ Aromatic Hydrocarbons	80	60	55			
C ₉ H ₁₂ Aromatic Hydrocarbons	300	190	200			
C ₉ H ₁₂ Aromatic Hydrocarbons	150	120	90			
Styrene	450	/	280			j

Note: These are estimated values.

*Duplicate

ND=none detected, less than 20 ppb by weight for soil & 5 ppb by weight for water.

-1 husday

PROJECT NO.	842132		PRO	JECT NAME	Bayenne Bar	nel & Drun
LOCATION	Vewez	NJ	LAB	ORATORY	Gollelo	
	TYPE			TOTAL # C	OF SAMPLERS	<u></u>
SAMPLE NO.	(WATER/SO	IL) DATE	TIME	CONTAINER		REMARKS
BBD 17/5	Sol	10/31/85	0845	19	K zei	VOA, TPHC, PCE
BB017/11	Soul	10/31/55	0353	4/250	not Mittel	PP, TPHC
BED 17/2-3'	Soil	10/31/95	0856		143.e	
BBD 17/5-71	Seil	10/31/85	2941	197	MBul	•
880 17/9-11	Sil	10/31/55	1058	194	18 Zul	_
83213/1	5011	ie/31/85	1232	2/14/2	of M Zent	TPHC, PCB
BBD 18/2'	So:/	10/31/8	1244	19	M3.L	
BBD 18/3'	5.1/	10/31/855	1256	197	M 3cl	
BBD 20	Water	10/31/25	1325	2=40 ml	M Zock	VOA
BB019/11	5./	10/31/05	1343	2/197,1/2	pt to Jue	VOA, TPHC, PC
BBD19/21	Sul	10/3/15	1352	15	13 mi	
BBD 19/3.	S::/	10/3:/65	1358	199	287	
Relinquished M. Jul	i By:	Date/Time: /0/3//8	Rece	ived By:	Comments/Condit	ion:
Relinguished	By:	Date/Time:	Rece	ived By:	Comments/Condit	ion:
Fell lej-		11/1/85-18	00 8/	Au	Good	
Method of Sh	ipment:	Shipped By:	Rece	ived By:	Comments/Condit	ion:
					Authorization	
Receive	d for Labor	ratory:	lag-		for Disposal:	•
Laborat	ory Job No	*	- -		- Type of Dispos	ial:
Date/Ti	me:	1-85	<u>. </u>	800	Date of Dispos	al:
			1 .			

are helf-part jor is for VOA.

These 2/2

PROJECT NO.	PYEIBZ		· · · · · · · · · · · · · · · · · · ·		PRO	JECT NAME	E R	Gene Roil	ult Drum
LOCATION	Newark,	N	I			ORATORY_			
	TYPE	· · · · · ·		1		TOTAL 6	1 05	I cucy ma	
SAMPLE NO.	(WATER/SO	IL)	DATE		TIME '	CONTAIN		SAMPLERS SIGNATURE	REMARKS
BBD51	Sediment		10/3/8	1/9	130	197		KZE	ТРНС, РСВ
BBOW1	Water		10/31/55	1/9	136	194	•	14 Jud	TPHC, PCB
83052	sediment		1931/85	14	43	2 /4	4	MZ	VOA, PCB
BBS3	sediment		10/31/15	1	27	21/9	3-	H Zerl	TPHC
R8054	sediment	•	1=/31/8s	1/	54	2 = 19	27	1431	YOA, TPHC, PCB
								0	
· · · · · · · · · · · · · · · · · · ·			• !		•		;		
			£						
	, ,		•	7-			÷		
				· /					
,	•					· · · · · · · · · · · · · · · · · · ·	J	•	
				·					
Relinquished H. Zerl	i By:	٠,	e/Time:	<u></u>	Recei	yed By:	Соп	ments/Conditi	on:
Relinquished	l By:	Date	e/Time:	807		yed By:		ments/Conditi	on: -
Method of Sh	ipment:		oped By:		1	ved By:		ments/Conditi	on:
Receive	ed for Labor	atoi	ry:	<i>þ</i>				thorization r Disposal:	
Laborat	ory Job No:	· ·		· .1		• , ,	<u> —</u> Ту	pe of Disposa	1:
Date/Ti	me:	- \ -	-85		1	410	Da	te of Disposa	1:

2/2

PROJECT NO.	0. 846182 PROJECT NAME Bayenne						
LOCATION	lewet, NJ			ORATORY 60			
			· · · · · · · · · · · · · · · · · · ·				
SAMPLE NO.	TYPE (WATER/SOIL)	DATE	TIME	TOTAL # OF CONTAINERS	SAYPLERS SIGNATURE	REMARKS	
BBD12/2'	eb:/	10/24/85	1323	130	M3		
BED12/3'	5./	10/29/95	1351	194	M3-L		
3/3/13/11	51/	10/29/35	1423	2, 17,20	K3-L	VOA, TPHC, PCE	
730/3/2	511	19/27/85	1430	15	K Burn	•	
330/3/3'	&,/	10/21/85	1440	154	M3-L		
B20 13/41	Water	10/29/5	250	2×40 ml	Mile	VOA	
		•					
				•			
			-	۸			
/			1				
				•			
Relinquished M. Zul		e/Time:	1. 111		mments/Conditi	on:	
Relinquished		e/Time:		7	uce.		
1111		1/85 180	1 1 / //	Я І	mments/Conditi	on: -	
Method of Sh	ipment: Shi	pped By:	Recei	V	mments/Conditi	on:	
			; , , , ,		<u> </u>		
Receive	d for Laborato	ry:/	M. G.		utherization or Disposal:	•	
Laborat	ory Job No:	· · ·	7	T	ype of Disposa	1:	
Date/Ti	ne: 1,/31/	HT 14	16	D	ate of Disposa	1:	

Wediesday 1/1

PROJECT NO. 396136 PROJECT NAME Barrel of						rel of Drun
LOCATION	Newark, A	UJ	IAB	oratory <u>60</u>	166	
SAMPLE NO.	TYPE (WATER/SO)	L) DATE	TIME	TOTAL # OF CONTAINERS	SIGNATURE	REMARKS
BB04/1(AD)	/، د	10/30/8-	0752	4, 4, 4p		PP, (1) TPHC
B3014/11(R)	Sui/	19/3./95	0324	4. 7. 120	123.	PP, TPHC
33015/1	So./	10/3=/95	0404	2; \$1,1/	MZI	TPHC, PCB, METALS
80015/21	Sil .	10/3-18	0431	19-	123ml	
B2015/3'	Sil	19/3:/57-	0437	194	MZL	
83015/5-7'	Soil	10/5/25	0954	197	MZL	VOA, TPHC
3305/9-11	35/	10/3/85	1026	15%	M31	
BB015/12-14	Sil	10/3-/35	1058	197	AZL	, , ,
83015/151	Weber	10/32/9,-	1228	2×40 ml	Migh	YOA
BBD16/1-2'	Si/	19/3/95	1330	2; St, KP	A Beach	VOA
830/6/5-51		10/2/15	1415	1x1/2 pt	A3-i	PP, TPHC ⁽²⁾
83016 5-8	Si/	10/3/35	H5/1425	199	143	PP, TPHC ⁽²⁾
Relinquished	By:	Date/Time:	. د	ad/	nments/Condit:	ion:
Relinguished	By:	Date/Time:	Rece:	ived/By: Co	mments/Condit	ion: _
Method of Sh	ipment:	Shipped By:		ived By: Co	mments/Conditi	ion:
Receive	Received for Laboratory:					
Laborat	ory Job No:			Т	ype of Disposa	al:
Date/Ti	me: 10/3	1/25 1	Mo	D	ate of Disposa	al:

^{)&}lt;sub>PP</sub> = Priority Pollutants Analyses.

⁽²⁾ Samples BBD16/5-8' and BBD16/ $\frac{5-8}{8-10}$, should be combined before PP, TPHC analyses.

1/2

PROJECT NO.	846182		PRO	DJECT NAME 2	Bayoune Box	rel + Drun
LOCATION	lywork, N	7	LAI	BORATORY 60	<u> १</u> १०३	
SAYPLE NO.	TYPE (WATER/SOII) DATE	TIME	TOTAL # OF CONTAINERS		REMARKS
BB02/5-7'	53,1	10/29/35	0749	124	M Zerl	,
B3D2/9-111	Soil	14/29/85	0809	134	MZIL	Company of the
830.2/13-15	S.:/	19/29/85	0834	15	Hzue	
8801/5-7'	5.1	19/29/85	1034	2; 1st	14 Zuck	•
BBD10/11	Sui!	19/29/85	1113	154	Migh	ТРНС
8801921	Soil	19/29/85		154	R Zul	
BBD 10/3'	Sil	10/29/95	2	197	MZL	
BBD 11/11	501	19/29/85	1234	14	M Zend	TPHC, METALS (1)
BB5 11/2'	Soi/	10/29/85	1241	191	M3-L	ТРНС
B35 11/31	\$:/	14/24/85	1246	194	A Zed	
	5.1	10/29/5	1315	194	Mzi	TPHC, PCB
	<u> 5.c/</u>	10/29/85- 1	1	1x1/2 pt	MZ	VOA
Relinquished 4.3	7.1	1te/Time:			ments/Conditi m ice	on:
Religavished		ite/Time:	V		mments/Conditi	on: -
Morbod of Ch		31/85 180	- V- V-		nice	
Method of Sh	ipment: Sh	ipped By:	Recei	ved By: Con	ments/Conditi	on:
Received	d for Laborat	ory://	J_		uthorization or Disposal:	
	ory Job No:	7		T)	pe of Disposa	ļ:
Date/Tim	e: 10/31/	t1 18	10	Da	ite of Disposal	l :

⁽¹⁾ METALS ANALYSES: As, Ba, Cd, Cr, Pb, Hg, Ag, Se.

Samples Collected Time Sampling beg		finished	Sampling Date:	13/85 \$
Collection Method	Boring		4/2	7/25 - 12/13/
Sampling Equipmen	t Used: Split 3	Secon		
Sample Matrix	: <u>S.i/</u>	•	1	
Was Chain of Custo Were Samples Deliv	ody Implemented vered to Lab on Ic		10 10	
	ANALYSIS	REQUES	TED	
Farameter	Container ID	Detection Limit	Preservative Used	Requested Turnarcund Time(days)
TPHC	BBD15/3'			
TPIRC	BBD15/9-11'			
TPHC, PCB	BBD16/1-2'			
TPHC, PCB	BBD17/2-3'			
TPHC	BED 17/5-7'			
TPHL, PCB	BBD18/2'	¥		
TPHC, PCB	BBD18/3'			
TPHC, PCB	BBD 19/2'	-		
TPHC, PCB	BBD 19/3'	-		
TPXC, PCB	BBDCI/5-7'	_		
TPHC, PCB	BBDC3/2.5-4.5			
TPHC, PCB	BBO C 3/10-12'			-
LOMMENTS:				
ANALYSIS REQUESTED	BY: 142			

PROJECT NO.	840182		PRO	JECT NAME	Berone Born	of a Dum
LOCATION _/	work			ORATORY GO	0	
						. N
SAMPLE NO.	TYPE (WATER/ S	OIL) DATE	TIME U	TOTAL # OF CONTAINERS	1	REMARKS
BEO 7/1'	Soil	10/28/25	080	194	MZent	ТРНС
8807/21	Soil	19/28/8	0808	194	Mzul	
8307/3	Soil	19/28/85	0814	154	M3L	
2808/11	Sul	14/25/10	0909	194	R34	VOA', TPHC, METALS
3305/2°	Soil	10/28/8	0914	184	M3L	
BB08/3'	Soil	10/28/85	0919	124	M3ch	
3809/11	Soil	10/2/25	0949	194	M Zerl	TPHC, PCB
330 9/21	501/	10/25/81 =	0954	194	M Zeel	
BBD 9/3'	Soil	10/23/35	0957	124	W. Berk	TPHC
BBD 9/5-7'	Sal	10/28/8	1053	191	MZL	
3309/7-91	Soil	10/28/8		15+-	MZent	
BBD9/9-11	50.1	10/28/85 1	109	194	18 Buch	
Relinquished M Zurl	By:	Date/Time: 1814		- a i7 · · · · · ·	ments/Conditi	on:
Relinquished	By:	Date/Time:			mments/Conditi	on:
Method of Sh	ipment:	Shipped By:	Recei	ved By: Con	mments/Conditi	on:
Receive	d for Labo	ratory &	'Alkan	A. S.	uthorization or Disposal:	•
Laborat	ory Job No			T)	ype of Disposa	1:
Date/Ti	De:		<u> </u>	Dá	ate of Disposa	1:

⁽¹⁾ METALS ANALYSES: As, Ba, Cd, Cr, Pb, Hg, Ag, Se.

PROJECT NO.	840182		PRO	DJECT NAME	Boyere Bare	14 Drum
LOCATION	Newale		•	BORATORY		
						,
SAMPLE NO.	TYPE (WATER/SO)	L) DATE	TIME	TOTAL # CONTAINE	, , , = =======	REMARKS
3328/5-7		10/28/91	1202	154	MZel	
BBD8/9-11'	· · · · · · · · · · · · · · · · · · ·	10/28/85	1305	151	H3eL	
BBD4/5-7'		10/21/85	1353	194	MBerl	
BBD4/9-11	50,1	19/28/35	1421	194	18 zul	
BBD4/13-5	Soil	19/23/95	1451	154	Mzul	
•	· · ·					
				,		
	·					
	• /					
				-		
	•			_		
Relinquished H. Zel	/	Date/Time: Date/Fr 18		ived By:	Comments/Conditi	on:
Relinquished	By:	ate/Time:			Comments/Conditi	on:
Method of Shi	ipment: S	hipped By:	Recei	ved By:	Comments/Condition	on:
Received for Laboratory: H Dallacer					Authorization for Disposal:	•
Laborato	ory Job No:_			· · · · · · · · · · · · · · · · · · ·	Type of Disposal	L:
Date/Tim	ie:	Date of Disposal				

PROJECT NO	84c	182	PRO.	JECT NAME	Bavewe Bar	rel and Drom Co
LOCATION	New	ark	LAB	ORATORY	Gollob	
SAMPLE NO.	TYPE (WATER/SOI	L) DATE	TIME	TOTAL # OF CONTAINERS		REMARKS
88D 1	Soil	1/18/85	9:40	181	D) Honors	PCB'S
BBD 2	Soil	1/18/85	10:00	197	D) Monow	PCB'S
88D 3	Soil	1/18/85	10:20	1 GT	74. Zuchen	PCB'S
88D 4	Seil	1/18/85	11.15	1 GT	12 Zula	PCB'S
88D 5	Soil	1/18/85	11:00	IET	M Zuchen	PCB'S
880 6	Soil	1/18/85	10:45	1 DT	M Jucken	PCB'S
8807	Soil	1/18/85	12:35	J GT	M. Zeche	PCB'S
88 D 8	Soil	1/18/85	13:00	IRT.	Marken	PCB'S .
88D 9	Soil	1/18/25	13:40	IQT	M Juchen	PCB'S
88010	Sil	1/18/85	13:10	101	D & Monow	EP-TOXICITY
BBD 11-	Soil	1/18/85	12:10	107 -	Dillonon	PCB'S
B8D 12	Sal	1/18/85	12:20	101	M. Juchen	PCB'S
Relinquished M. Zuch	_	Date/Time: 1/18/85 4			Comments/Conditi	.on:
Relinquished David	d By:	Date/Time: 1/18/85 /7:	. 1		Comments/Conditi	on:
Method of S		Shipped By:	- 2/.		Comments/Conditi	ion:
			7			
Receiv	ed for Labo	racory: Th	me.	~	Authorization for Disposal:	
Labora	tory Job No	11.01-	al	min had	Type of Dispose	11:

PROJECT NO	840	182	PRO.	JECT NAME B	ayoune Barre	el and Drum Co	
LOCATION	Neu	park	LAB	ORATORY	30/10b		
		•	3 /				
SAMPLE NO.	TYPE (WATER/SOII	.) DATE	TIME	TOTAL # OF CONTAINERS	SAMPLERS SIGNATURE	REMARKS	
B80 13	Soil	1/18/85	12:30	107	Do Monew	PCB'S	
BBD 14	Seil	1/18/85	14:10	/ QT	DJ Monow	PCB'S	
						<u> </u>	
			خرج			*	
	•	•	-	•			
	(
•				-			
Relinquishe	,	Date/Time: 1/18/85 4		Morow C	Good.	ion:	
Relinquishe David	d By:	Date/Time: 1/18/85 17.	Rece	ived By: C	omments/Condit	ion:	
Method of S		Shipped By:		eived By: C	omments/Condit	ion:	
Receiv	Received for Laboratory:						
	atory Job No:				Type of Dispos	al:	
		1/18/95		1712 hs	Date of Dispos	al:	
i.	. 4.			,			

Dr	•	Da	n	Ra	V	i	V		
Ra	vi	V	As	50	c	i	a	te	S

Page 2

G.A.S. #59359

- . •	Hydrocarbon	
	<u> </u>	
	EAGION ALDON	AUG IVALA

Sample Identification TPHC (Milligrams/kilogr	<u>am</u>)	Date Extracted	<u>Date</u> Analyzeci
BBD 1(0-1')	,	11/5/85	11/14/85
BBD 2(0-1') 1390		11/5/85	11/14/85
BBD 3(0-1') 4410		11/5/85	11/14/85
BBD 4(1'-2') 10,500		11/5/85	11/14/85
BBD 5(0-1') 23,800	;	11/5/85	11/14/85
BBD 6(0-1') 640 (650)*		11/5/85	11/14/85

Duplicate Determination

PCB Analysis	<u>PCB</u>	(Milligrams/	kilogram)	
Sample Identification				
BBD 3 (0-1')		42≭	11/7/85	11/12/85

The chromatographic fingerprint is characteristic of Arochlor 1248.

Volatile Analysis

Subject samples have been analyzed for volatile organics according to EPA Method 624. No volatile constituents were detected in either sample.

Sample Identification	Volatiles (PPB by Wgt.)	
BBD 1 (0-1')	ND 20 10/31/85 11/5/85	
BBD 2 (0-1')	ND 20 10/31/85 11/5/85	

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331

To: Dr. Dan Raviv
Dan Raviv Associates
5 Central Avenue
West Orange, NJ 07052

G.A.S. REPORT No. 59360 2

Date Requested: 10/29/85
Date Reported: 11/22/85
P.O. No. 84C182

MATERIAL SUBMITTED:

17 (Seventeen) Soil Samples (Seventeen Soil Samples Extracted - 4 Analyzed)

INFORMATION REQUESTED:

Gas Chromatography Analysis

NOTEBOOK REFERENCE

SW 1137, Page 1 GC/MS 1057, Pg. 78

RESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 10/29/85, have been analyzed for the constituents requested, and listed in the attached tables.

PACEL OS Inc.

n 112785

GOLLOR ANALYTICAL SERVICE

EP Toxicity Test

Metals

Sample Identity:		BBD-10
<u>Constituents</u> <u>Concentration</u>	, m:	illigrams/liter
Arsenic	′	0.002
Barium	ND	1
Cadmium		0.21
Chromium, total		0.02
Lead		2.6
Mercury		0.0004
Selenium		0.001
Silver	ND	0.02

<u>Pesticides</u>

micrograms/liter

Endrin	ND 1
Lindane	ND 1
Methoxychlor	ND 1
Toxaphene	ND 1
2,4-D	ND 1
2,4,5-TP	ND 1

ND=none detected, less than

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 • TEL. (201) 464 3331

Dan Raviv Associates, Inc. 28082

NOV 2 C 1985

TO:

Dr. D. Raviv Raviv Associates 5 Central Avenue West Orange, NJ 07052

59 RECEIVED G.A.S. REPORT No.

Date Requested: 11/5/85 P.O. No.

10/29/85 84C182

MATERIAL SUBMITTED.

18 (Eighteen) Soil Samples - Bayonne Barrel & Drum

INFORMATION REQUESTED:

Gas Chromatography/Mass Spectrometry, Infrared and Gas Chromatography Analyses

NOTEBOOK REFERENCE:

GC/MS 1057, Page 78 and SW 1137, Page 1

RESULT OF INVESTIGATION

Subject samples, hand delivered on 10/28/85, have been analyzed for the constituents requested.

All data are presented in the attached tables.

n111985

GOLLOB ANALYTICAL SERVICE

Gollob Analytical Service Den Roviv Associares, Inc.

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) JAND337 155

RECEIVED

10. Dr. D. Raviv

Raviv Associates

5 Central Avenue

West Orange, NJ 07052

G.A.S. REPORT No.

59397

Date Requested:

11/1/85

Date Reported:

12/26/85/

P.O. No.

84C182

IATERIAL SUBMITTED:

30 (Thirty) Samples- (BBD)

VFORMATION REQUESTED: Gas Chromatography, Gas Chromatography/Mass Spectrometry

Analyses

OTEBOOK REFERENCE:

GC/MS 1057 page 78, AP 1089 page 67, SW 1138 page 1

RESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 11/1/85, have been analyzed for the constituents requested and listed in the attached tables.

page 1 of 5 t 123085 \

GOLLOB ANALYTICAL SERVICE

BBD 15/1'

P	olychlorinated Biph	enyls	Analysis (PC	B'S)	(ECGC*)		
,	Constituent:			PCB		-	
	Sample Identity		ncentration,	ppm	by Weight	Arochlor	Type
	BBD 12/1'	`		2		1248	
/ ÷		• .		4		1254	,
		100					

1248 30 BBD 13/1' 1254 1254

Samples Extracted 11/5/85 Samples Analyzed 11/14/85

*Electron Capture Gas Chromatography

Petroleum Hydrocarbons (Infrared Analysis)

Constituent:	Petroleum Hydrocarbons
Sample Identity	milligrams/kilograms
BBD4/1'	6040
BBD 14/1'	460
BBD 15/1'	1820, 1820
BBD 15/5-7'	3740
BBD 16/5-8'-8-10'*	410
BBD 10/1'	580
BBD 11/1'	4450
BBD 11/2'	760
BBD 12/1'	100
BBD 13/1'	8260

*Composited

Samples Extracted 11/11/85 Samples Analyzed 11/14/85

(Continued) Sample BBD 17/1*

Fluoranthene	ms/kilogram
Fluorene	ND
Heptachlor	ND ND
Heptachlor epoxide Hexachlorobenzene	ND
Hexachlorobutadiene	ND
Hexachloroethane	ND
	ND
Indeno(1,2,3-cd)pyrene	ND
Isophorone	ND
Naphthalene Nitrobenzene	ND
	ND
N-Nitrosodi-n-propylamine PCB-1016	ND
PCB-1221	ND /
PCB-1232	ND ND
PCB-1242	ND
PCB-1248	· · · · · · · · · · · · · · · · · · ·
PCB-1254	ND ND
PCB-1260 Phenanthrene	ND ND
en 🛬 💮 en en en en en en en en en en en en en	ND
Pyrene	
Toxaphena	ND
1,2,4-Trichlorobenzene Benzidine	ND
e-BHC	ND
	ND _
y-BHC	ND
Endosulfan I	ND
Endosulfan	ND
Endrin	ND
Hexachlorocyclopentadiene	ND
N-Nitrosodimethylamine	ND
N-Nitrosodiphenylamine	ND
2-Methyl Naphthalene	15.5

ND=none detected, less than 0.5

Date Extracted: 11/13/85

Date Analyzed: 12/5/85

TCDD DATA REPORT Catifornia Analytical Laboratories 2544 Industrial Bivd. W. Sacramento, CA 95691

12-17-85

Column: SP-2331

Lab: California Analytical Laboratories Case No. 23217 Batch/Shipment No.

	•						٠.							•		
Cal Labs	Sample Number	Allquot C Wet Wt. U (grams)	PPB TCDD Neas	PPB TCDD Det. Inst Lmt ID	Diste	Time	320/ 322	.332/ Su	PB Frg Surrg as X Acc'c	320	322	257	328*	332	334	
23217HB 23217-1	METHOD BLANK 59411 BBD 17/1	Y 10.00	ND	•	12/17/85 12/17/85	20:22:00	•	* .	.02 102	•	•••	•	650301 31101	688667 33520	850474 47024	

	f8 = Field Blank	
)	ND - Not Detected	
٠	DL = Detection Limit	
'	RX - Re-extraction	
	MPC = Haximum Possible Concentration	m
•		ND = Not Detected DL = Detection Limit RX = Re-extraction

^{*}Corrected for contribution by native TCDD; 0.9% of m/z 322 subtracted

FORM B-1

MOLININI-GOLLOB. INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL: (201) 464 3331

Dr. D. Raviv Raviv Associates 5 Central Avenue West Orange, NJ 07052

G.A.S. REPORT No.

60209

(Originnally 59411)

Date Requested: Date Reported

11/5/85

P.O. No.

2/13/86 84C182

MATERIAL SUBMITTED:

1 (One) Soil Sample - BBD-17/1'

INFORMATION REQUESTED:

Gas Chromatography/Mass Spectrometry Analysis

NOTEBOOK REFERENCE:

LM 1134 page 74

ESULT OF INVESTIGATION

Subject sample, hand delivered to G.A.S., has been analyzed for the constituents requested and listed in the attached tables.

This completes G.A.S. 59411.

page 1 of 4

t 21986

GOLLOB ANALYTICAL SERVICE

Base Neutral & Pesticide Extractables

milligrams/kilogram

	milligram:
Sample Identity:	BBD 17/
Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Aldrin	ND
Benzo(a)anthracene	ND
Benzo(b)fluoranthene	ND
Benzo(k)fluoranthene	ND
Benzo(a)pyrene	ND
Benzolghilperylene	ND
Benzyl butyl phthalate	19.3
ր∙BHC	ND
6-BHC	ND
Bis(2-chloroethyl)ether	ND
Bis(2-chloroethoxy)methane	ND
Bis(2-ethylhexyl)phthalate	ND
Bis(2-chloroisopropyllether	ND
. 4-Bromophenyl phenyl ether	ND
Chlordane	ND
2-Chloronaphthalene	ЙĐ
4-Chlorophenyl phenyl ether	ND
Chrysene	ND
4,4'-DDD	ND
4.4'-DDE	ND
4,4'-DDT	ND
Dibenzola, h) anthrácana	ND
Di-n-butylphthalata	17.0
1,3-Dichlorobenzene	ND
1,2-Dichlorobenzene	ND
1,4-Dichlorobenzana	ND
3,3'-Dichlorobenzidine	ND
Dieldrin	ND
Diethyl phthalate	ND
Dimethyl phthalata	ND
2,4-Dinitrotoluene	ND
2,6-Dinitrotoluene	ND
Di-n-octylphthalate	ND
Endosulian sulfate	,ND
Endrin aldehyde	ND
ND=none detected, less t	
Date Extracted: 11/13/	
Date Analyzed: 12/5/8	35

Raysy Associates			,		· ****		•	' ,	·	<u>. •.</u>	<u> </u>		,	٠, .	
Sample Identification:	A Nethad 67	4	Se:	1!	<u>bter</u>					Soi			Meer		
Pollutants	880-	4/2"	12/2.	13/1	3/4"	15/	15/	14/	<u>.· </u>	-2'	40	280	Black		,
Chloropethane				1	0 5		NO 5	20	20				10		,
Bronceethane					1	٠.	i								. ,
Vinyl Chloride						. ,					. !				•.
Chloroethane										<u>,</u>					٠٠,
Methylene Chloride						ľ	1			·	:				
in the first of the second of						Ċ.	1.1			٠. *					
Trichlorofluoromethane		, , ,		11.4						Í					
1,1,-Dichloroethylene						•						٠.			
1,1-Dichloroethane	,					. 4.									
1,2-Dichloroethylene	·					,			11			. ,		1 1	
Chlorofora		`								(. •
1,2-Dichloroethane															
1,1,1-Trichloroethane					A	.				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					-
Carbon Tetrachloride	•					-	11	1	1				11		
Bromodichloromethana	* 3 *.			,							, ,	1			
1,2-Dichloropropane			, ;· ·							:	} '		1		ĺ ´.
trans-1,3-Dichloropropene	e Paper	٠.	1										11		
Trichloroethylene	•	•								٠.					
Benzene		55	1	29		60	1.	1		57	30				Ċ
Dibromochloromethane								1	1.1						
cis-1,3-Dichloropropene					ĺ	-							11.		
1,1,2-Trichloroethane													1		ļ.
2-Chloroethylvinyl Ether	•]-			•										
Bronoform						1	+1	1		•		,	11		·
1,1,2,2-Tetrachloroethene									11			1			
1,1,2,2-Tetrachloroethane							-								
Toluene	* *-	360		210		-			$\ \ $	930			1.		
Chlorobenzene	1		1			-				,,,,		,			
Ethylbenzene		8600	52	810		87	11			830			11		
			-			-								,	İ
1,3-Dichlorobenzene 1,2 4 1,4-Dichlorobenzene			/	1		1 .									
					"		\		*	,	•		-		١.
*5-8' + 5-8'/8-10' Non Priority Pollutants D	etected					1							,	1	
l-Butarol		50			10 5		100	5 🚾	20				-		
C _{FR16} Aliphatic Hydrocarbon C _{FR14} Aliphatic Hydrocarbon		35 190	1	70		1	-	11			70		1	1	
Cally Witharie Hydrocarbon		30		"	1		1	-			30			ŀ	
s-Xylens		2800	38	,		1				140	0 43	Ì	1		
o/p Xylene		2800	1.	1	11			Ш		120	0 23		1		1
C _g H ₁₂ Armstic Hydrocarbon	1	3400	30	130 330		910 580		\prod		•	q		1		1
C _p H ₁₂ Aromatic Hydrocarbon C _p H ₁₀ Aromatic Hydrocarbon		2600				300	: .I						A.		
C _p H ₁₂ Archatic Hydrocarbon	· ·	330	31	60		550					1 .				
Note: Municipus artimatic const	ituents			1					.			4.			
eluced after the GC/MS data fi							1.						.] `		
and are not reported. The values for the above compo	xinds are			1	. 7.										
estimated except for mylene.			1						•	1		1	1		
							-		•	1:					
		. 1	1	1	2		1	I		•	1 7	τ			7

MOLININI-GOLLOB, INC.

Can Frain Laurine Inc.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 • TEL. (201) 464 3331

TO.

Dr. D. Raviv Raviv Associates 5 Cenral Avenue West Orange, NJ 07052

G.A.S. REPORT No.

59411

Date Requested: Date Reported:

11/5/85

P.O. No.

12/20/85 84C182

MATERIAL SUBMITTED.

15 (Fifteen) Soil Samples - (8 Analyzed)

2 (Two) Water Samples

INFORMATION REQUESTED: Infrared, Atomic Absorption, Chemical, Gas Chromatography & Gas Chromatography/Mass Spectrometry Analyses

NOTEBOOK REFERENCE:

AP 1089 page 67, GC/MS 1054 page 98, SW 1137 page 7

RESULT OF INVESTIGATION

Subject samples, hand delivered to G.A.S. on 11/5/85. have been analyzed for the constituents requested and listed in the attached tables.

page 1 of 6 t 122685

GOLLOB ANASYTICAL SERVICE

Chemical Analysis

Constituents:	Cvanide	Phenol
Sample Identity	milligrams/kilog	ram
BBD 4/1'	2	15
BBD 14/1*	ND 0.1	ND 0.5
BBD 16/5-8' & 8-10'*	ND 0.1	2.8

*Composited

Samples extracted 11/13/85
Samples analyzed 11/18/85

Atomic Absorption Analysis

Sample Identity:	BBD-4/1'	BBD-14/1'	BBD-15/1'	BBD-16/5-8' 8-10'*	BBD-11/1'
		millig	rams/kilog	cam	
Antimony	13	8.4		4.0	
Arsenic	17	8.4	55	2.9	51
Beryllium	0.64	0.28	- 7	0.32	. · · · · ·
Cadmium	1300	0.52	5.08	0.2	4.72
Chromium	3400	27	52.0	7.00	43.2
Copper	15 500	15.6	\	4.64	V 🚗
Lead	8400	92	6400	15	380
Mercury	2.2	1.6	4.1	0.62	1.3
Nickel	62.4	25		5.28	*
Selenium	0.030	0.019	0.042	ND 0.004	0.004
Silver	0.92	0.3	0.84	0.2	0.48
Thallium	ND 0.4	ND 0.4		ND 0.4	
Zinc	4520	71.2		15.4	
Barium	-		10		10

ND=none detected, less than

^{*}Composite

Volatile Organic Analysis (EPA 624)

All data are presented in the table listing the priority and nonpriority constituents detected.

Flame Ionization Gas Chromatography Analysis

Sample Identity:	BBD4/1' BBD14/1'	BBD16/5-8&8-10				
Constituents	Concentration, ppm 1	ov Weight				
Acrolein	ND 1 ND 1	ND 1				
Acrylonitrile	ND 1 ND 1	ND 1				

Samples Extracted 11/5/85
Samples Analyzed 11/12/85

Note: Base Neutral & Acid Extractibles will be reported at a later date.

ND=none detected, less than

Appendix D

Laboratory Data Sheets

MOLININI-GOLLOB, INC.

47 INDUSTRIAL ROAD, BERKELEY HEIGHTS, NEW JERSEY 07922 . TEL. (201) 464 3331

TO:

Dr. D. Raviv

Dan Raviv Associates 588 Eagle Rock Avenue West Orange, NJ 07052 G.A.S. REPORT No.

57163A

Date Requested: Date Reported:

1/18/85 2/1/85

P. O. No.

84C182

MATERIAL SUBMITTED:

14 (Fourteen) Soil Samples - (13 Analyzed)

INFORMATION REQUESTED:

Gas Chromatography Analysis

NOTEBOOK REFERENCE:

CM 1063 page 1, CM 1023 page 59

RESULT OF INVESTIGATION

Subject samples have been analyzed by gas chromatography (Hall Electrolytic Conductivity Detection) for the presence of polychlorinated biphenyls (PCB'S) as requested.

... EP Toxicity results on Sample BBD-10 will be reported at a later date.

Alldata are presented in the attached table.

t 2185

		concentration, Milligrams/kilog								
Sample Identification:	8 <u>KED</u> 9	9_	Date Extracted	Date Analyze:						
	11 11	<u>2</u> 3 <u>'</u>	Exclacted	MB1+25.						
Constituents	*	2		• •						
Petroleum Hydrocarbons 4520	3470 10,70	0 480	11/11/85	11/12/8						
Arsenic	- 390		11/12/85	11/13/8.						
Barium	- 22	•	1/11/85	11/15/8.						
Cadmium	- 34	•	11/11/85	11/12/8.						
Chromium	- 1900	-	11/11/85	11/12/8						
Lead	- 8400		11/11/85	11/12/8						
Mercury	- 13.6			11/13/8						
Silver	- 3.1		11/11/85	11/12/8.						
Selenium	- 0.046	-	11/13/85	11/14/8:						
PCB	2	23	11/7/85	11/12/8.						

Sample Identification:	135	Ď	, -	T	T			1				1	T					
collutants	 =			1	┪			+			T	1	1					٦
bloromethane	Ж	20	•	1	ļ			1		:				,				
romome thene	• }	ŧ.					.	1				1	1				Ì	
inyl Chloride		l	٠.	- '		٠.,		.				- [-	1	, .			-	
Moroethane		,	1	1.	1				٠.,		1							
ethylene Chloride							1			-		1		٠.		١.,		
richlorofluoromethane		•		1				1				-				İ		•
.iDichloroethylene		1		1.				1		ľ					<u> </u>	1		
,1-Dichloroethane	.			ı	. ,	* *. *		1		1	1			ľ	1		.	٠
1,2-Dichloroethylene				1				-				-			1	. .		
Clorofora	1	1			,													٠.
1.2-Dichloroethane	.			.	٠.	;	1:	1								:	,]	-
	}	1									1	- 1				1		
1,1,1-Trichloroethane	.]		-			•	1	•		.	:	•		1	١.		
Carbon Tetrachlorids	.			l		}			4.		٠] .			1				
Bromodichloromethane	:	ŀ		ł	1				•		1					.]	.	•
1,2-Dichloropropane	1	١		1								1				1		•
trans-1,3-Dichloropropene				.	,					1						1		
Trichloroethylene	.											: <i>,</i> '	*	1			. 1	
Beasens	l		1	- }		1					3		•	1		$\cdot \cdot $		
hibromochloromethane				1		1		1		١.	١							
cis-1,3-Dichloropropene				- 1	,	"				1				١,				
1,1,2-Trichloroethane	4			١ ١		1		·			1							٠
2-Chloroethylvinyl Ether			1				1	•			1	,						•
Bronoform					,							•			-	1		
1,1,2,2-Tetrachloroethene	. ;			- 1			•	٠		·		,					.	
1,1,7,2-Tetrachloroethane	•			Ì			1			.	.]			ŀ			I	,
Toluene								-		1		. · •				1		
Chlorobenzene					•						-							
Ethylbenzene	· ` :.	1		,			İ											
1,3-Dichlorobenzene			П				1		l		- 1					1		
1,2 & 1,4-Dichlorobenzene		l	V				f			- 1			}		ı	ı		
	•			•							- 1							
Date Extracted 10/30/85						· 1	1	•		-	·				1			
Date Analyzed 11/8/85														1	1	•	. •	
	V.	1		,			.]	•				-			.	- 1		
		١	- 1	, ·	G	٦,		٠,		- 1								
	*				1				1					•	.			
· · ·	:						Ì	•.							•		`.	١.
														-			,*	
	•					\mathbf{A}					•			1				1
			٠.							1			l			•	•	
	. •	ł				1				1						٠		1
											•							
•		-		•		.												
									1				1	ŀ			1	
•		- [-	- 1		1	. 1			1.	ı					